Title & Authors | Journal | Publication Date |
---|---|---|
Structural characterization of influenza group 1 chimeric hemagglutinins as broad vaccine immunogens |
Proc Natl Acad Sci | Feb. 12, 2025 |
Chimeric hemagglutinins (cHA) appear to be promising for the design and development of universal influenza vaccines. Influenza A group 1 cHAs, cH5/1, cH8/1, and cH11/1, comprising an H1 stem attached to either an H5, H8, or H11 globular head, have been used sequentially as vaccine immunogens in human clinical trials and induced high levels of broadly protective antibodies. Using X-ray crystallography and negative-stain electron microscopy, we determined structures of cH5/1, cH8/1, and cH11/1 HAs in their apo (unliganded) and antibody Fab-bound states. Stem-reactive antibodies 3E1 and 31.b.09 recognize their cognate epitopes in cH5/1, cH8/1, and cH11/1 HAs. However, with cH5/1, the head domains are rotated by 35 to 45° around the threefold axis of the HA trimer compared to native HA with a more splayed-open conformation at the stem base. cH11/1 with 3E1 is structurally more native-like but resembles cH5/1 with 31.b.09, whereas cH8/1 with 31.b.09 exhibited a range of closed-to-open stem configurations with some separation of head and stem domains. Furthermore, all of these group 1 cHAs effectively bound a broad head trimer interface antibody and other broad stem antibodies. Thus, the cHAs exhibit structural plasticity without compromising the stem and head trimer interface epitopes for elicitation of influenza A group 1 cross-reactive antibodies. |
||
Structural mapping of polyclonal IgG responses to HA after influenza virus vaccination or infection |
mBio | Feb. 6, 2025 |
Cellular and molecular characterization of immune responses elicited by influenza virus infection and seasonal vaccination have informed efforts to improve vaccine efficacy, breadth, and longevity. Here, we use negative stain electron microscopy polyclonal epitope mapping (nsEMPEM) to structurally characterize the humoral IgG antibody responses to hemagglutinin (HA) from human patients vaccinated with a seasonal quadrivalent flu vaccine or infected with influenza A viruses. Our data show that both vaccinated and infected patients had humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs, including the stem and anchor, which are targets for universal influenza vaccine design. Responses against H1 predominantly targeted the central stem epitope in infected patients and vaccinated donors, whereas head epitopes were more prominently targeted on H3. Responses against H3 were less abundant, but a greater diversity of H3 epitopes were targeted relative to H1. While our analysis is limited by sample size, on average, vaccinated donors responded to a greater diversity of epitopes on both H1 and H3 than infected patients. These data establish a baseline for assessing polyclonal antibody responses in vaccination and infection, providing a context for future vaccine trials and emphasizing the need for further characterization of protective responses toward conserved epitopes. |
||
Structurally convergent antibodies derived from different vaccine strategies target the influenza virus HA anchor epitope with a subset of VH3 and VK3 genes |
Nat Commun | Feb. 2, 2025 |
H1N1 influenza viruses are responsible for both seasonal and pandemic influenza. The continual antigenic shift and drift of these viruses highlight the urgent need for a universal influenza vaccine to elicit broadly neutralizing antibodies (bnAbs). Identification and characterization of bnAbs elicited in natural infection and immunization to influenza virus hemagglutinin (HA) can provide insights for development of a universal influenza vaccine. Here, we structurally and biophysically characterize four antibodies that bind to a conserved region on the HA membrane-proximal region known as the anchor epitope. Despite some diversity in their VH and VK genes, the antibodies interact with the HA through germline-encoded residues in HCDR2 and LCDR3. Somatic mutations on HCDR3 also contribute hydrophobic interactions with the conserved HA epitope. This convergent binding mode provides extensive neutralization breadth against H1N1 viruses and suggests possible countermeasures against H1N1 viruses. |
||
Anti–immune complex antibodies are elicited during repeated immunization with HIV Env immunogens |
Sci Immunol | Jan. 17, 2025 |
Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Epitope mapping has shown that early antibody responses are directed to easily accessible nonneutralizing epitopes on Env instead of bnAb epitopes. Autologously neutralizing antibody responses appear upon boosting, once immunodominant epitopes are saturated. Here, we use electron microscopy–based polyclonal epitope mapping (EMPEM) to elucidate how repeated immunization with HIV Env SOSIP immunogens results in the generation of Ab2α anti-idiotypic antibodies in rabbits and rhesus macaques. We present the structures of six anti–immune complex antibodies and find that they target idiotopes composed of framework regions of antibodies bound to Env. Examination of cryo–electron microscopy density enabled prediction of sequences for an anti–immune complex antibody, the paratope of which is enriched with aromatic amino acids. This work sheds light on current vaccine development efforts for HIV, as well as for other pathogens in which repeated exposure to antigen is required. |
||
Experimental medicine study with stabilised native-like HIV-1 Env immunogens drives long-term antibody responses, but lacks neutralising breadth |
EBioMedicine | Jan. 2, 2025 |
Background We report findings from an experimental medicine study of rationally designed prefusion stabilised native-like HIV envelope glycoprotein (Env) immunogens, representative of global circulating strains, delivered by sequential intramuscular injection. Methods Healthy adult volunteers were enrolled into one of five groups (A to E) each receiving a different schedule of one of two consensus Env immunogens (ConM SOSIP, ConS UFO, either unmodified or stabilised by chemical cross-linking, followed by a boost with two mosaic Env immunogens (Mos3.1 and Mos3.2). All immunogens were co-formulated with liposomal Monophosphoryl-Lipid A (MPLA) adjuvant, and volunteers were followed up for 28 days post final Mosaic booster injection. Participants gave written informed consent to join the study. The study is registered on ClinicalTrials.gov ID NCT03816137. Findings Fifty-one participants (men n = 23 and women n = 28) aged 18–55 were enrolled. The seroconversion rate against Env was 100% with all participants having measurable anti-Env IgG antibodies after their second injection and throughout the study. Neutralisation was detected against the ConM pseudovirus in sera of those who had received both ConM and ConS immunogens. However, this activity was limited in breadth and was neither boosted nor broadened in those receiving the Mos3.1 and Mos3.2 immunogens. Neutralising antibody function correlated with binding to V1/V3 and V5 epitopes and peaked after the third injection. Interpretation Rationally designed prefusion-stabilised native-like Env trimers are robustly immunogenic in a prime-boost schedule. When given alone they are insufficient to induce neutralising antibody titres of significant breadth, but they represent potentially valuable polishing immunogens after germline-targeting. Funding European Aids Vaccine initiative (EAVI2020) received funding from EU Horizon 2020, grant number 681137. Structural studies were supported by the Bill and Melinda Gates Foundation (INV-002916). |
||
A single mutation in dairy cow-associated H5N1 viruses increases receptor binding breadth |
Nat Commun | Dec. 30, 2024 |
Clade 2.3.4.4b H5N1 is causing an unprecedented outbreak in dairy cows in the United States. To understand if recent H5N1 viruses are changing their receptor use, we screened recombinant hemagglutinin (HA) from historical and recent 2.3.4.4b H5N1 viruses for binding to distinct glycans bearing terminal sialic acids using a glycan microarray. We find that H5 from A/Texas/37/2024, an isolate from the dairy cow outbreak, has increased binding breadth to core glycans bearing terminal α2,3 sialic acids, the avian receptor, compared to historical and recent 2.3.4.4b H5N1 viruses. We do not observe any binding to α2,6 sialic acids, the receptor used by human seasonal influenza viruses. Using molecular dynamics and a cryo-EM structure of A/Texas/37/2024 H5, we show A/Texas/37/2024 H5 is more flexible within the receptor-binding site compared to a 2.3.4.4b H5 from 2022. We identify a single mutation outside of the receptor binding site, T199I, is responsible for increased binding breadth, as it increases receptor binding site flexibility. Together, these data show recent H5N1 viruses are evolving increased receptor binding breadth which could impact the host range and cell types infected with H5N1. |
||
MERS-CoV spike vaccine-induced N-terminal domain-specific antibodies are more protective than receptor binding domain-specific antibodies |
iScience | Dec. 18, 2024 |
The COVID-19 pandemic underscores the need to prepare for future emerging coronavriuses (CoVs) by understanding the principles behind effective CoV vaccine design such as protective immunity and antibody responses. To study which epitopes and subdomains contribute to in vivo protection, we utilized the prefusion-stabilized spike protein of MERS-CoV, MERS S-2P, as a vaccine immunogen. Vaccination with MERS S-2P elicited both receptor-binding domain (RBD)- and non-RBD-specific antibodies, including N-terminal domain (NTD)-specific G2-and CDC2-A2-like antibodies. Intriguingly, the immunogen MERS S-2P_ΔRBD, MERS S-2P with the RBDs removed, protects comparably to S1 and S-2P immunogens against MERS-CoV challenge. Moreover, passive transfer studies of polyclonal IgG from MERS S-2P immunized mice depleted of subdomain-specific antibodies demonstrated that non-RBD antibodies protected more than non-NTD antibodies. Altogether, these findings illustrate that in-vivo protection is not solely driven by RBD-specific antibodies and highlights the importance of targeting non-RBD sites in future CoV vaccine designs. |
||
Polyfunctionality and breadth of HIV-1 antibodies are associated with delayed disease progression |
PLoS Pathog | Dec. 11, 2024 |
HIV-1 infection leads to chronic disease requiring life-long treatment and therefore alternative therapeutics, a cure and/or a protective vaccine are needed. Antibody-mediated effector functions could have a role in the fight against HIV-1. However, the properties underlying the potential beneficial effects of antibodies during HIV-1 infection are poorly understood. To identify a specific profile of antibody features associated with delayed disease progression, we studied antibody polyfunctionality during untreated HIV-1 infection in the well-documented Amsterdam Cohort Studies. Serum samples were analyzed from untreated individuals with HIV-1 at approximately 6 months (n = 166) and 3 years (n = 382) post-seroconversion (post-SC). A Luminex antibody Fc array was used to profile 15 different Fc features for serum antibodies against 20 different HIV-1 envelope glycoprotein antigens and the resulting data was also compared with data on neutralization breadth. We found that high HIV-1 specific IgG1 levels and low IgG2 and IgG4 levels at 3 years post-SC were associated with delayed disease progression. Moreover, delayed disease progression was associated with a broad and polyfunctional antibody response. Specifically, the capacity to interact with all Fc γ receptors (FcγRs) and C1q, and in particular with FcγRIIa, correlated positively with delayed disease progression. There were strong correlations between antibody Fc features and neutralization breadth and several antibody features that were associated with delayed disease progression were also associated with the development of broad and potent antibody neutralization. In summary, we identified a strong association between broad, polyfunctional antibodies and delayed disease progression. These findings contribute new information for the fight against HIV-1, especially for new antibody-based therapy and cure strategies. |
||
Structural characterization of human monoclonal antibodies targeting uncommon antigenic sites on spike glycoprotein of SARS-CoV |
J Clin Invest. | Nov. 26, 2024 |
The function of the spike protein N terminal domain (NTD) in coronavirus (CoV) infections is poorly understood. However, some rare antibodies that target the SARS-CoV-2 NTD potently neutralize the virus. This finding suggests the NTD may contribute in part to protective immunity. Pan-sarbecovirus antibodies are desirable for broad protection, but the NTD region of SARS-CoV and SARS-CoV-2 exhibit a high level of sequence divergence, and therefore, cross-reactive NTD-specific antibodies are unexpected, and there is no structure of a SARS-CoV NTD-specific antibody in complex with NTD. Here we report a monoclonal antibody COV1-65 encoded by the IGHV1-69 gene that recognizes the NTD of SARS-CoV S protein. A prophylaxis study showed the MAb COV1-65 prevented disease when administered before SARS-CoV challenge of BALB/c mice, an effect that requires intact Fc effector functions for optimal protection in vivo. The footprint on the S protein of COV1-65 is near to functional components of the S2 fusion machinery, and the selection of COV1-65 escape mutant viruses identified critical residues Y886H and Q974H, which likely affect the epitope through allosteric effects. Structural features of the mAb COV1-65-SARS-CoV antigen interaction suggest critical antigenic determinants that should be considered in the rational design of sarbecovirus vaccine candidates. |
||
Modulating the immunodominance hierarchy of immunoglobulin germline-encoded structural motifs targeting the influenza hemagglutinin stem |
Cell Rep | Nov. 22, 2024 |
Antibodies targeting epitopes through germline-encoded motifs can be found in different individuals. While these public antibodies are often beneficial, they also pose hurdles for subdominant antibodies to emerge. Here, we use transgenic mice that reproduce the human IGHV1-69∗01 germline-encoded antibody response to the conserved stem epitope on group 1 hemagglutinin (HA) of influenza A virus to show that this germline-endowed response can be overridden by a subdominant yet cross-group reactive public antibody response. Immunization with a non-cognate group 2 HA stem enriched B cells harboring the IGHD3-9 gene, thereby switching from IGHV1-69- to IGHD3-9-encoded motif-dependent epitope recognition. These IGHD3-9 antibodies bound, neutralized, and conferred cross-group protection in mice against influenza A viruses. A cryoelectron microscopy (cryo-EM) structure of an IGHD3-9 antibody resembled the human broadly neutralizing antibody FI6v3, which uses IGHD3-9. Together, our findings offer insights into vaccine regimens that engage an immunoglobulin repertoire with broader cross-reactivity to influenza A viruses. |
||
AIntibody: an experimentally validated in silico antibody discovery design challenge |
Nat Biotechnol | Nov. 20, 2024 |
Launching an AI/ML benchmarking competition: AIntibody.org |
||
Plant-produced SARS-CoV-2 antibody engineered towards enhanced potency and in vivo efficacy |
Plant Biotechnol J. | Nov. 19, 2024 |
Prevention of severe COVID‐19 disease by SARS‐CoV‐2 in high‐risk patients, such as immuno‐compromised individuals, can be achieved by administration of antibody prophylaxis, but producing antibodies can be costly. Plant expression platforms allow substantial lower production costs compared to traditional bio‐manufacturing platforms depending on mammalian cells in bioreactors. In this study, we describe the expression, production and purification of the originally human COVA2‐15 antibody in plants. Our plant‐produced mAbs demonstrated comparable neutralizing activity with COVA2‐15 produced in mammalian cells. Furthermore, they exhibited similar capacity to prevent SARS‐CoV‐2 infection in a hamster model. To further enhance these biosimilars, we performed three glyco‐ and protein engineering techniques. First, to increase antibody half‐life, we introduced YTE‐mutation in the Fc tail; second, optimization of N‐linked glycosylation by the addition of a C‐terminal ER‐retention motif (HDEL), and finally; production of mAb in plant production lines lacking β‐1,2‐xylosyltransferase and α‐1,3‐fucosyltransferase activities (FX‐KO). These engineered biosimilars exhibited optimized glycosylation, enhanced phagocytosis and NK cell activation capacity compared to conventional plant‐produced S15 and M15 biosimilars, in some cases outperforming mammalian cell produced COVA2‐15. These engineered antibodies hold great potential for enhancing in vivo efficacy of mAb treatment against COVID‐19 and provide a platform for the development of antibodies against other emerging viruses in a cost‐effective manner. |
||
Broadly inhibitory antibodies to severe malaria virulence proteins |
Nature | Nov. 12, 2024 |
Malaria pathology is driven by the accumulation of Plasmodium falciparum-infected erythrocytes in microvessels1. This process is mediated by the polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins of the parasite. A subset of PfEMP1 variants that bind to human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis2. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here we describe two broadly reactive and inhibitory human monoclonal antibodies to CIDRα1. The antibodies isolated from two different individuals exhibited similar and consistent EPCR-binding inhibition of diverse CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins, as well as parasite sequestration in bioengineered 3D human brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with three different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies are likely to represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria. Two broadly reactive and inhibitory human monoclonal antibodies against the malaria parasite Plasmodium falciparum have been characterized, providing insights into immunity, prevention and treatment of severe malaria. |
||
CosolvKit: a Versatile Tool for Cosolvent MD Preparation and Analysis |
J Chem Inf Model. | Nov. 11, 2024 |
Cosolvent molecular dynamics (MDs) are an increasingly popular form of simulations where small molecule cosolvents are added towater-solvated protein systems. These simulations can perform diverse target characterization tasks, including cryptic and allosteric pocket identification and pharmacophore profiling and supplement suites of enhanced sampling methods to explore protein conformational landscapes. The behavior of these systems is tied to the cosolvents used, so the ability to define diverse and complex mixtures is critical in dictating the outcome of the simulations.However, existing methods for preparing cosolvent simulations only support a limited number of predefined cosolvents and concentrations. Here, we present CosolvKit, a tool for the preparation and analysis of systems composed of user-defined cosolvents and concentrations. This tool is modular, supporting the creation of files for multiple MD engines, as well as direct access to OpenMM simulations, and offering access to a variety of generalizable small-molecule force fields. To the best of our knowledge, CosolvKit represents the first generalized approach for the construction of these simulations. |
||
Assessing AF2's ability to predict structural ensembles of proteins. |
Structure | Nov. 7, 2024 |
Recent breakthroughs in protein structure prediction have enhanced the precision and speed at which protein configurations can be determined. Additionally, molecular dynamics (MD) simulations serve as a crucial tool for capturing the conformational space of proteins, providing valuable insights into their structural fluctuations. However, the scope of MD simulations is often limited by the accessible timescales and the computational resources available, posing challenges to comprehensively exploring protein behaviors. Recently emerging approaches have focused on expanding the capability of AlphaFold2 (AF2) to predict conformational substates of protein. Here, we benchmark the performance of various workflows that have adapted AF2 for ensemble prediction and compare the obtained structures with ensembles obtained from MD simulations and NMR. We provide an overview of the levels of performance and accessible timescales that can currently be achieved with machine learning (ML) based ensemble generation. Significant minima of the free energy surfaces remain undetected. |
||
On the humanization of VHHs: Prospective case studies, experimental and computational characterization of structural determinants for functionality |
Protein Sci. | Oct. 18, 2024 |
The humanization of camelid‐derived variable domain heavy chain antibodies (VHHs) poses challenges including immunogenicity, stability, and potential reduction of affinity. Critical to this process are complementarity‐determining regions (CDRs), Vernier and Hallmark residues, shaping the three‐dimensional fold and influencing VHH structure and function. Additionally, the presence of non‐canonical disulfide bonds further contributes to conformational stability and antigen binding. In this study, we systematically humanized two camelid‐derived VHHs targeting the natural cytotoxicity receptor NKp30. Key structural positions in Vernier and Hallmark regions were exchanged with residues from the most similar human germline sequences. The resulting variants were characterized for binding affinities, yield, and purity. Structural binding modes were elucidated through crystal structure determination and AlphaFold2 predictions, providing insights into differences in binding affinity. Comparative structural and molecular dynamics characterizations of selected variants were performed to rationalize their functional properties and elucidate the role of specific sequence motifs in antigen binding. Furthermore, systematic analyses of next‐generation sequencing (NGS) and Protein Data Bank (PDB) data was conducted, shedding light on the functional significance of Hallmark motifs and non‐canonical disulfide bonds in VHHs in general. Overall, this study provides valuable insights into the structural determinants governing the functional properties of VHHs, offering a roadmap for their rational design, humanization, and optimization for therapeutic applications. |
||
Use of 3M-052-AF with Alum adjuvant in HIV trimer vaccine induces human autologous neutralizing antibodies |
J Exp Med | Oct. 7, 2024 |
Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140 formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding, and immunogenicity in a first-in-healthy adult (n = 17), randomized, and placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, and B cell and CD4+ T cell responses emerged after vaccination. Five vaccinees developed serum autologous tier 2 nAbs (ID50 titer, 1:28-1:8647) after two to three doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B cell–derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/Alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. |
||
Mosaic and mixed HIV-1 glycoprotein nanoparticles elicit antibody responses to broadly neutralizing epitopes |
PLoS Pathog. | Oct. 3, 2024 |
An effective human immunodeficiency virus 1 (HIV-1) vaccine will most likely have to elicit broadly neutralizing antibodies (bNAbs) to overcome the sequence diversity of the envelope glycoprotein (Env). So far, stabilized versions of Env, such as SOSIP trimers, have been able to induce neutralizing antibody (NAb) responses, but those responses are mainly strain-specific. Here we attempted to broaden NAb responses by using a multivalent vaccine and applying a number of design improvements. First, we used highly stabilized SOSIP.v9 trimers. Second, we removed any holes in the glycan shields and optimized glycan occupancy to avoid strain-specific glycan hole responses. Third, we selected five sequences from the same clade (B), as we observed previously that combining Env trimers from clade A, B and C did not improve cross-reactive responses, as they might have been too diverse. Fourth, to improve antibody (Ab) responses, the Env trimers were displayed on two-component I53-50 nanoparticles (NPs). Fifth, to favor activation of cross-reactive B cells, the five Env trimers were co-displayed on mosaic NPs. Sixth, we immunized rabbits four times with long intervals between vaccinations. These efforts led to the induction of cross-reactive B cells and cross-reactive binding Ab responses, but we only sporadically detected cross-neutralizing responses. We conclude that stabilized HIV-1 Env trimers that are not modified specifically for priming naive B cells are unable to elicit strong bNAb responses, and infer that sequential immunization regimens, most likely starting with specific germline-targeting immunogens, will be necessary to overcome Env’s defenses against the induction of NAbs. The antigens described here could be excellent boosting immunogens in a sequential immunization regimen, as responses to bNAb epitopes were induced. |
||
Broadly potent spike-specific human monoclonal antibodies inhibit SARS-CoV-2 Omicron sub-lineages |
Commun Biol | Oct. 2, 2024 |
The continuous emergence of SARS-CoV-2 variants of concern has rendered many therapeutic monoclonal antibodies (mAbs) ineffective. To date, there are no clinically authorized therapeutic antibodies effective against the recently circulating Omicron sub-lineages BA.2.86 and JN.1. Here, we report the isolation of broad and potent neutralizing human mAbs (HuMabs) from a healthcare worker infected with SARS-CoV-2 early in the pandemic. These include a genetically unique HuMab, named K501SP6, which can neutralize different Omicron sub-lineages, including BQ.1, XBB.1, BA.2.86 and JN.1, by targeting a highly conserved epitope on the N terminal domain, as well as an RBD-specific HuMab (K501SP3) with high potency towards earlier circulating variants that was escaped by the more recent Omicron sub-lineages through spike F486 and E484 substitutions. Characterizing SARS-CoV-2 spike-specific HuMabs, including broadly reactive non-RBD-specific HuMabs, can give insight into the immune mechanisms involved in neutralization and immune evasion, which can be a valuable addition to already existing SARS-CoV-2 therapies. Isolation of a broad and potent neutralizing human monoclonal antibody which targets a conserved N-terminal epitope and neutralizes Omicron sub-lineages, including BA.2.86 and JN.1, offers insights into immune evasion mechanisms. |
||
Defining bottlenecks and opportunities for Lassa virus neutralization by structural profiling of vaccine-induced polyclonal antibody responses |
Cell Rep. | Sept. 24, 2024 |
Lassa fever continues to be a major public health burden in West Africa, yet effective therapies or vaccines are lacking. The isolation of protective neutralizing antibodies against the Lassa virus glycoprotein complex (GPC) justifies the development of vaccines that can elicit strong neutralizing antibody responses. However, Lassa vaccine candidates have generally been unsuccessful at doing so, and the associated antibody responses to these vaccines remain poorly characterized. Here, we establish an electron microscopy-based epitope mapping workflow that enables high-resolution structural characterization of polyclonal antibodies to the GPC. By applying this method to rabbits vaccinated with a recombinant GPC vaccine and a GPC-derived virus-like particle, we reveal determinants of neutralization that involve epitopes of the GPC-A competition cluster. Furthermore, by identifying undescribed immunogenic off-target epitopes, we expose the challenges that recombinant GPC vaccines face. By enabling detailed polyclonal antibody characterization, our work ushers in a next generation of more rational Lassa vaccine design. |