Title & Authors | Journal | Publication Date |
---|---|---|
Differences in the Binding Affinity of an HIV-1 V2 Apex-Specific Antibody for the SIV(smm/mac) Envelope Glycoprotein Uncouple Antibody-Dependent Cellular Cytotoxicity from Neutralization. |
mBio | July 2, 2019 |
As a consequence of their independent evolutionary origins in apes and Old World monkeys, human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency viruses of the SIVsmm/mac lineage express phylogenetically and antigenically distinct envelope glycoproteins. Thus, HIV-1 Env-specific antibodies do not typically cross-react with the Env proteins of SIVsmm/mac isolates. Here we show that PGT145, a broadly neutralizing antibody to a quaternary epitope at the V2 apex of HIV-1 Env, directs the lysis of SIVsmm/mac-infected cells by antibody-dependent cellular cytotoxicity (ADCC) but does not neutralize SIVsmm/mac infectivity. Amino acid substitutions in the V2 loop of SIVmac239 corresponding to the epitope for PGT145 in HIV-1 Env modulate sensitivity to this antibody. Whereas a substitution in a conserved N-linked glycosylation site (N171Q) eliminates sensitivity to ADCC, a lysine-to-serine substitution in this region (K180S) increases ADCC and renders the virus susceptible to neutralization. These differences in function correlate with an increase in the affinity of PGT145 binding to Env on the surface of virus-infected cells and to soluble Env trimers. To our knowledge, this represents the first instance of an HIV-1 Env-specific antibody that cross-reacts with SIVsmm/mac Env and illustrates how differences in antibody binding affinity for Env can differentiate sensitivity to ADCC from neutralization. |
||
Developability Assessment of Physicochemical Properties and Stability Profiles of HIV-1 BG505 SOSIP.664 and BG505 SOSIP.v4.1-GT1.1 gp140 Envelope Glycoprotein Trimers as Candidate Vaccine Antigens. |
J Pharm Sci | July 1, 2019 |
The induction of broadly neutralizing antibodies (bNAbs) is a major goal in the development of an effective vaccine against HIV-1. A soluble, trimeric, germline (gI) bNAb-targeting variant of the HIV-1 envelope glycoprotein (termed BG505 SOSIP.v4.1-GT1.1 gp140, abbreviated to GT1.1) has recently been developed. Here, we have compared this new immunogen with the parental trimer from which it was derived, BG505 SOSIP.664 gp140. We used a comprehensive suite of biochemical and biophysical methods to determine physicochemical similarities and differences between the 2 trimers, and thereby assessed whether additional formulation development efforts were needed for the GT1.1 vaccine candidate. The overall higher order structure and oligomeric states of the 2 vaccine antigens were quite similar, as were their thermal, chemical, and colloidal stability profiles, as evaluated during accelerated stability studies. Overall, we conclude that the primary sequence changes made to create the gl bNAb-targeting GT1.1 trimer did not detrimentally affect its physicochemical properties or stability profiles from a pharmaceutical perspective. This developability assessment of the BG505 GT1.1 vaccine antigen supports using the formulation and storage conditions previously identified for the parental SOSIP.664 trimer and enables the development of GT1.1 for phase I clinical studies. |
||
Similarities and differences between native HIV-1 envelope glycoprotein trimers and stabilized soluble trimer mimetics. |
PLoS Pathog | July 1, 2019 |
The HIV-1 envelope glycoprotein (Env) trimer is located on the surface of the virus and is the target of broadly neutralizing antibodies (bNAbs). Recombinant native-like soluble Env trimer mimetics, such as SOSIP trimers, have taken a central role in HIV-1 vaccine research aimed at inducing bNAbs. We therefore performed a direct and thorough comparison of a full-length unmodified Env trimer containing the transmembrane domain and the cytoplasmic tail, with the sequence matched soluble SOSIP trimer, both based on an early Env sequence (AMC011) from an HIV+ individual that developed bNAbs. The structures of the full-length AMC011 trimer bound to either bNAb PGT145 or PGT151 were very similar to the structures of SOSIP trimers. Antigenically, the full-length and SOSIP trimers were comparable, but in contrast to the full-length trimer, the SOSIP trimer did not bind at all to non-neutralizing antibodies, most likely as a consequence of the intrinsic stabilization of the SOSIP trimer. Furthermore, the glycan composition of full-length and SOSIP trimers was similar overall, but the SOSIP trimer possessed slightly less complex and less extensively processed glycans, which may relate to the intrinsic stabilization as well as the absence of the membrane tether. These data provide insights into how to best use and improve membrane-associated full-length and soluble SOSIP HIV-1 Env trimers as immunogens. |
||
Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. |
Cell Host Microbe | June 12, 2019 |
The fusion peptide (FP) of HIV-1 envelope glycoprotein (Env) is essential for mediating viral entry. Detection of broadly neutralizing antibodies (bnAbs) that interact with the FP has revealed it as a site of vulnerability. We delineate X-ray and cryo-electron microscopy (cryo-EM) structures of bnAb ACS202, from an HIV-infected elite neutralizer, with an FP and with a soluble Env trimer (AMC011 SOSIP.v4.2) derived from the same patient. We show that ACS202 CDRH3 forms a “β strand” interaction with the exposed hydrophobic FP and recognizes a continuous region of gp120, including a conserved N-linked glycan at N88. A cryo-EM structure of another previously identified bnAb VRC34.01 with AMC011 SOSIP.v4.2 shows that it also penetrates through glycans to target the FP. We further demonstrate that the FP can twist and present different conformations for recognition by bnAbs, which enables approach to Env from diverse angles. The variable recognition of FP by bnAbs thus provides insights for vaccine design. |
||
Structures of the otopetrin proton channels Otop1 and Otop3. |
Nat Struct Mol Biol | June 1, 2019 |
Otopetrins (Otop1–Otop3) comprise one of two known eukaryotic proton-selective channel families. Otop1 is required for otoconia formation and a candidate mammalian sour taste receptor. Here we report cryo-EM structures of zebrafish Otop1 and chicken Otop3 in lipid nanodiscs. The structures reveal a dimeric architecture, with each subunit forming twelve transmembrane helices divided into structurally similar amino (N) and carboxy (C) domains. Cholesterol-like molecules occupy various sites in Otop1 and Otop3 and occlude a central tunnel. In molecular dynamics simulations, hydrophilic vestibules formed by the N and C domains and in the intrasubunit interface between N and C domains form conduits for water entry into the membrane core, suggesting three potential proton conduction pathways. By mutagenesis, we test the roles of charged residues in each putative permeation pathway. Our results provide a structural basis for understanding selective proton permeation and gating of this conserved family of proton channels. |
||
Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. |
Nat Commun | May 29, 2019 |
Stabilized HIV-1 envelope glycoproteins (Env) that resemble the native Env are utilized in vaccination strategies aimed at inducing broadly neutralizing antibodies (bNAbs). To limit the exposure of rare isolate-specific antigenic residues/determinants we generated a SOSIP trimer based on a consensus sequence of all HIV-1 group M isolates (ConM). The ConM trimer displays the epitopes of most known bNAbs and several germline bNAb precursors. The crystal structure of the ConM trimer at 3.9 Å resolution resembles that of the native Env trimer and its antigenic surface displays few rare residues. The ConM trimer elicits strong NAb responses against the autologous virus in rabbits and macaques that are significantly enhanced when it is presented on ferritin nanoparticles. The dominant NAb specificity is directed against an epitope at or close to the trimer apex. Immunogens based on consensus sequences might have utility in engineering vaccines against HIV-1 and other viruses. |
||
Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. |
Nat Commun | May 28, 2019 |
Recent history is punctuated by the emergence of highly pathogenic coronaviruses such as SARS- and MERS-CoV into human circulation. Upon infecting host cells, coronaviruses assemble a multi-subunit RNA-synthesis complex of viral non-structural proteins (nsp) responsible for the replication and transcription of the viral genome. Here, we present the 3.1 Å resolution structure of the SARS-CoV nsp12 polymerase bound to its essential co-factors, nsp7 and nsp8, using single particle cryo-electron microscopy. nsp12 possesses an architecture common to all viral polymerases as well as a large N-terminal extension containing a kinase-like fold and is bound by two nsp8 co-factors. This structure illuminates the assembly of the coronavirus core RNA-synthesis machinery, provides key insights into nsp12 polymerase catalysis and fidelity and acts as a template for the design of novel antiviral therapeutics. |
||
The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. |
Cell Rep | May 21, 2019 |
Epitope-targeted HIV vaccine design seeks to focus antibody responses to broadly neutralizing antibody (bnAb) sites by sequential immunization. A chimpanzee simian immunodeficiency virus (SIV) envelope (Env) shares a single bnAb site, the variable loop 2 (V2)-apex, with HIV, suggesting its possible utility in an HIV immunization strategy. Here, we generate a chimpanzee SIV Env trimer, MT145K, which displays selective binding to HIV V2-apex bnAbs and precursor versions, but no binding to other HIV specificities. We determine the structure of the MT145K trimer by cryo-EM and show that its architecture is remarkably similar to HIV Env. Immunization of an HIV V2-apex bnAb precursor Ab-expressing knockin mouse with the chimpanzee MT145K trimer induces HIV V2-specific neutralizing responses. Subsequent boosting with an HIV trimer cocktail induces responses that exhibit some virus cross-neutralization. Overall, the chimpanzee MT145K trimer behaves as expected from design both in vitro and in vivo and is an attractive potential component of a sequential immunization regimen to induce V2-apex bnAbs. |
||
A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface. |
Cell | May 16, 2019 |
Here, we describe the discovery of a naturally occurring human antibody (Ab), FluA-20, that recognizes a new site of vulnerability on the hemagglutinin (HA) head domain and reacts with most influenza A viruses. Structural characterization of FluA-20 with H1 and H3 head domains revealed a novel epitope in the HA trimer interface, suggesting previously unrecognized dynamic features of the trimeric HA protein. The critical HA residues recognized by FluA-20 remain conserved across most subtypes of influenza A viruses, which explains the Ab’s extraordinary breadth. The Ab rapidly disrupted the integrity of HA protein trimers, inhibited cell-to-cell spread of virus in culture, and protected mice against challenge with viruses of H1N1, H3N2, H5N1, or H7N9 subtypes when used as prophylaxis or therapy. The FluA-20 Ab has uncovered an exceedingly conserved protective determinant in the influenza HA head domain trimer interface that is an unexpected new target for anti-influenza therapeutics and vaccines. |
||
Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance. |
Cell | May 16, 2019 |
Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (TFH) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes. |
||
Antibody responses to viral infections: a structural perspective across three different enveloped viruses. |
Nat Microbiol | May 1, 2019 |
Antibodies serve as critical barriers to viral infection. Humoral immunity to a virus is achieved through the dual role of antibodies in communicating the presence of invading pathogens in infected cells to effector cells and interfering with processes essential to the viral lifecycle, chiefly entry into the host cell. For individuals that successfully control infection, virus-elicited antibodies can provide lifelong surveillance and protection from future insults. One approach to understand the nature of a successful immune response has been to utilize structural biology to uncover the molecular details of the antibodies derived from vaccines or natural infection and how they interact with their cognate microbial antigens. The ability to isolate antigen specific B-cells and rapidly solve structures of functional, monoclonal antibodies in complex with viral glycoprotein surface antigens has greatly expanded our knowledge of the sites of vulnerability on viruses. In this review, we compare the adaptive humoral immune responses to HIV, influenza, and filoviruses, with a particular focus on neutralizing antibodies. The pathogenesis of each of these viruses is quite different, providing an opportunity for comparison of immune responses: HIV causes a persistent, chronic infection; influenza an acute infection with multiple exposures during a lifetime and annual vaccination; and filoviruses, a virulent, acute infection. Neutralizing antibodies that develop under these different constraints are therefore sentinels that can provide insight into the underlying humoral immune responses and important lessons to guide future development of vaccines and immunotherapeutics. |
||
Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex. |
Acta Crystallogr F Struct Biol Commun | May 1, 2019 |
Ebola virus is an emerging virus that is capable of causing a deadly disease in humans. Replication, transcription and packaging of the viral genome are carried out by the viral nucleocapsid. The nucleocapsid is a complex of the viral nucleoprotein, RNA and several other viral proteins. The nucleoprotein forms large, RNA-bound, helical filaments and acts as a scaffold for additional viral proteins. The 3.1 Å resolution single-particle cryo-electron microscopy structure of the nucleoprotein–RNA helical filament presented here resembles previous structures determined at lower resolution, while providing improved molecular details of protein–protein and protein–RNA interactions. The higher resolution of the structure presented here will facilitate the design and characterization of novel and specific Ebola virus therapeutics targeting the nucleocapsid. |
||
Field-Based Affinity Optimization of a Novel Azabicyclohexane Scaffold HIV-1 Entry Inhibitor. |
Molecules | April 22, 2019 |
Small-molecule HIV-1 entry inhibitors are an extremely attractive therapeutic modality. We have previously demonstrated that the entry inhibitor class can be optimized by using computational means to identify and extend the chemotypes available. Here we demonstrate unique and differential effects of previously published antiviral compounds on the gross structure of the HIV-1 Env complex, with an azabicyclohexane scaffolded inhibitor having a positive effect on glycoprotein thermostability. We demonstrate that modification of the methyltriazole-azaindole headgroup of these entry inhibitors directly effects the potency of the compounds, and substitution of the methyltriazole with an amine-oxadiazole increases the affinity of the compound 1000-fold over parental by improving the on-rate kinetic parameter. These findings support the continuing exploration of compounds that shift the conformational equilibrium of HIV-1 Env as a novel strategy to improve future inhibitor and vaccine design efforts. |
||
The HIV-1 Envelope Glycoprotein C3/V4 Region Defines a Prevalent Neutralization Epitope following Immunization. |
Cell Rep | April 9, 2019 |
Despite recent progress in engineering native trimeric HIV-1 envelope glycoprotein (Env) mimics as vaccine candidates, Env trimers often induce vaccine-matched neutralizing antibody (NAb) responses. Understanding the specificities of autologous NAb responses and the underlying molecular mechanisms restricting the neutralization breadth is therefore informative to improve vaccine efficacy. Here, we delineate the response specificity by single B cell sorting and serum analysis of guinea pigs immunized with BG505 SOSIP.664 Env trimers. Our results reveal a prominent immune target containing both conserved and strain-specific residues in the C3/V4 region of Env in trimer-vaccinated animals. The defined NAb response shares a high degree of similarity with the early NAb response developed by a naturally infected infant from whom the HIV virus strain BG505 was isolated and later developed a broadly NAb response. Our study describes strain-specific responses and their possible evolution pathways, thereby highlighting the potential to broaden NAb responses by immunogen re-design. |
||
Stabilization of the V2 loop improves the presentation of V2 loop-associated broadly neutralizing antibody epitopes on HIV-1 envelope trimers. |
J Biol Chem | April 5, 2019 |
A successful HIV-1 vaccine will likely need to elicit broadly neutralizing antibodies (bNAbs) that target the envelope glycoprotein (Env) spike on the virus. Native-like recombinant Env trimers of the SOSIP design now serve as a platform for achieving this challenging goal. However, SOSIP trimers usually do not bind efficiently to the inferred germline precursors of bNAbs (gl-bNAbs). We hypothesized that the inherent flexibilities of the V1 and V2 variable loops in the Env trimer contribute to the poor recognition of gl-bNAb epitopes at the trimer apex that extensively involve V2 residues. To reduce local V2 flexibility and improve the binding of V2-dependent bNAbs and gl-bNAbs, we designed BG505 SOSIP.664 trimer variants containing newly created disulfide bonds intended to stabilize the V2 loop in an optimally antigenic configuration. The first variant, I184C/E190C, contained a new disulfide bond within the V2 loop, whereas the second variant, E153C/R178C, had a new disulfide bond that cross-linked V2 and V1. The resulting engineered native-like trimer variants were both more reactive with and were neutralized by V2 bNAbs and gl-bNAbs, a finding that may be valuable in the design of germline targeting and boosting trimer immunogens to create an antigenic conformation optimal for HIV vaccine development. |
||
A high-throughput inhibition assay to study MERS-CoV antibody interactions using image cytometry. |
J Virol Methods | March 1, 2019 |
|
||
Playing Chess with HIV. |
Immunity | Feb. 19, 2019 |
HIV envelope glycoprotein (Env) exhibits extreme antigenic variation that can be countered by an amazing class of immunoglobulins known as broadly neutralizing antibodies. Dingens et al. (2019) use saturating mutagenesis of Env to play out all of the potential bnAb escape strategies and in doing so define the functional epitopes of these important vaccine and immunotherapeutic targets. |
||
Capturing the inherent structural dynamics of the HIV-1 envelope glycoprotein fusion peptide. |
Nat Commun | Feb. 15, 2019 |
The N-terminal fusion peptide (FP) of the human immunodeficiency virus (HIV)-1 envelope glycoprotein (Env) gp41 subunit plays a critical role in cell entry. However, capturing the structural flexibility in the unbound FP is challenging in the native Env trimer. Here, FP conformational isomerism is observed in two crystal structures of a soluble clade B transmitted/founder virus B41 SOSIP.664 Env with broadly neutralizing antibodies (bNAbs) PGT124 and 35O22 to aid in crystallization and that are not specific for binding to the FP. Large rearrangements in the FP and fusion peptide proximal region occur around M530, which remains anchored in the tryptophan clasp (gp41 W623, W628, W631) in the B41 Env prefusion state. Further, we redesigned the FP at position 518 to reinstate the bNAb VRC34.01 epitope. These findings provide further structural evidence for the dynamic nature of the FP and how a bNAb epitope can be restored during vaccine design. |
||
Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes. |
J Virol | Feb. 15, 2019 |
Engineered SOSIP trimers mimic envelope-glycoprotein spikes, which stud the surface of HIV-1 particles and mediate viral entry into cells. When used for immunizing test animals, they elicit antibodies that neutralize resistant sequence-matched HIV-1 isolates. These neutralizing antibodies recognize epitopes in holes in the glycan shield that covers the trimer. Here, we added glycans to block the most immunogenic neutralization epitopes on BG505 and B41 SOSIP trimers. In addition, we removed selected other glycans to open new holes that might expose new immunogenic epitopes. We immunized rabbits with the various glycan-modified trimers and then dissected the specificities of the antibody responses. Thus, in principle, the antibody response might be diverted from one site to a more cross-reactive one, which would help in the induction of broadly neutralizing antibodies by HIV-1 vaccines based on envelope glycoproteins. |
Title & Authors | Journal | Publication Date |
---|---|---|
Structure of the SARS-CoV NSP12 polymerase bound to NSP7 and NSP8 co-factors Now Published: 10.1038/s41467-019-10280-3 |
bioRxiv | Feb. 15, 2019 |