Title & Authors Journal Publication Date

Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies

Pritchard LK, Spencer DI, Royle L, Bonomelli C, Seabright GE, Behrens AJ, Kulp DW, Menis S, Krumm SA, Dunlop DC, Crispin DJ, Bowden TA, Scanlan CN, Ward AB, Schief WR, Doores KJ, Crispin M
Nature communications April 3, 2023

The envelope spike of HIV-1 employs a ‘glycan shield’ to protect itself from antibody-mediated neutralization. Paradoxically, however, potent broadly neutralizing antibodies (bnAbs) have been isolated which target this shield. The unusually high glycan density on the gp120 subunit limits processing during biosynthesis, leaving a region of under-processed oligomannose-type structures which is a primary target of these bnAbs. Here we investigate the contribution of individual glycosylation sites to formation of this so-called intrinsic mannose patch. Deletion of individual sites has a limited effect on the overall size of the intrinsic mannose patch but leads to changes in the processing of neighboring glycans. These structural changes are largely tolerated by a panel of glycan-dependent bnAbs targeting these regions, indicating a degree of plasticity in their recognition. These results support the intrinsic mannose patch as a stable target for vaccine design.

Respiratory viruses: New frontiers—a Keystone Symposia report

Cable J, Sun J, Cheon IS, Vaughan AE, Castro IA, Stein SR, López CB, Gostic KM, Openshaw PJM, Ellebedy AH, Wack A, Hutchinson E, Thomas MM, Langlois RA, Lingwood D, Baker SF, Folkins M, Foxman EF, Ward AB, Schwemmle M, Russell AB, Chiu C, Ganti K, Subbarao K, Sheahan TP, Penaloza-MacMaster P, Eddens T.
Annals of the New York Academy of Sciences April 1, 2023

Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS‐CoV‐2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever‐evolving viruses that develop resistance, leaving therapy efficacy either short‐lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium “Respiratory Viruses: New Frontiers.” Researchers presented new insights into viral biology and virus–host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad. Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS‐CoV‐2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. On June 29 to July 2, 2022, researchers met for the Keystone symposium “Respiratory Viruses: New Frontiers”. The meeting was held jointly with the symposium “Viral Immunity: Basic Mechanisms and Therapeutic Applications.” Researchers presented new insights into viral biology and virus‐host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.

In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity

Wu NC, Grande G, Turner HL, Ward AB, Xie J, Lerner RA, Wilson IA
Nature Communications March 8, 2023

The relatively recent discovery and characterization of human broadly neutralizing antibodies (bnAbs) against influenza virus provide valuable insights into antiviral and vaccine development. However, the factors that influence the evolution of high-affinity bnAbs remain elusive. We therefore explore the functional sequence space of bnAb C05, which targets the receptor-binding site (RBS) of influenza haemagglutinin (HA) via a long CDR H3. We combine saturation mutagenesis with yeast display to enrich for C05 variants of CDR H3 that bind to H1 and H3 HAs. The C05 variants evolve up to 20-fold higher affinity but increase specificity to each HA subtype used in the selection. Structural analysis reveals that the fine specificity is strongly influenced by a highly conserved substitution that regulates receptor binding in different subtypes. Overall, this study suggests that subtle natural variations in the HA RBS between subtypes and species may differentially influence the evolution of high-affinity bnAbs. Broadly neutralizing antibodies (bnAbs) against influenza hemagglutinin (HA) have yielded insights for antiviral development. Here, the authors employ saturated mutagenesis of the paratope region of a bnAb combined with yeast display screening using H1 and H3 HAs, and find that a tradeoff exists between Ab affinity and breadth that influenced by disparate modes of receptor binding.

Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody to antigenically distinct Omicron subvariants

Changrob S, Halfmann PJ, Liu H, Torres JL, McGrath JJC, Ozorowski G, Li L, Wilbanks GD, Kuroda M, Maemura T, Huang M, Zheng NY, Turner HL, Erickson SA, Fu Y, Yasuhara A, Singh G, Monahan B, Mauldin J, Srivastava K, Simon V, Krammer F, Sather DN, Ward AB, Wilson IA, Kawaoka Y, Wilson PC.
Journal of Clinical Investigation March 2, 2023

The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with wildtype SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with wildtype, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain (RBD) via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared to diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential, and may inform target-driven vaccine design against future SARS-CoV-2 variants.

Co-evolution of HIV Envelope and Apex-Targeting Neutralizing Antibody Lineage Provides Benchmarks for Vaccine Design

Rantalainen K, Berndsen ZT, Murrell S, Cao L, Omorodion O, Torres JL, Wu M, Umotoy J, Copps J, Poignard P, Landais E, Paulson JC, Wilson IA, Ward AB
Cell Reports Dec. 22, 2022

Broadly neutralizing antibodies (bnAbs) targeting the HIV envelope glycoprotein (Env) typically take years to develop. Longitudinal analyses of both neutralizing antibody lineages and viruses at serial time points during infection provide a basis for understanding the co-evolutionary contest between HIV and the humoral immune system. Here, we describe the structural characterization of an apex-targeting antibody lineage and autologous clade A viral Env from a donor in the Protocol C cohort. Comparison of Ab-Env complexes at early and late time points reveals that, within the antibody lineage, the CDRH3 loop rigidifies, the bnAb angle of approach steepens, and surface charges are mutated to accommodate glycan changes. Additionally, we observed differences in site-specific glycosylation between soluble and full-length Env constructs, which may be important for tuning optimal immunogenicity in soluble Env trimers. These studies therefore provide important guideposts for design of immunogens that prime and mature nAb responses to the Env V2-apex.

Antibodies targeting the neuraminidase active site inhibit influenza H3N2 viruses with an S245N glycosylation site

Stadlbauer D, McMahon M, Turner HL, Zhu X, Wan H, Carreño JM, O'Dell G, Strohmeier S, Khalil Z, Luksza M, van Bakel H, Simon V, Ellebedy AH, Wilson IA, Ward AB, Krammer F.
Nature Communications Dec. 21, 2022

Contemporary influenza A H3N2 viruses circulating since 2016 have acquired a glycosylation site in the neuraminidase in close proximity to the enzymatic active site. Here, we investigate if this S245N glycosylation site, as a result of antigenic evolution, can impact binding and function of human monoclonal antibodies that target the conserved active site. While we find that a reduction in the inhibitory ability of neuraminidase active site binders is measurable, this class of broadly reactive monoclonal antibodies maintains protective efficacy in vivo. Antibodies that broadly inhibit influenza virus neuraminidase by binding to its active site could be therapeutic candidates, but circulating viruses have acquired a glycosylation site in that region. Here, the authors show that, while the S245N glycosylation site affects binding of tested monoclonal antibodies, protective activity in a mouse model is maintained.

Lassa virus glycoprotein nanoparticles elicit neutralizing antibody responses and protection

Brouwer PJM, Antanasijevic A, Ronk AJ, Müller-Kräuter H, Watanabe Y, Claireaux M, Perrett HR, Bijl TPL, Grobben M, Umotoy JC, Schriek AI, Burger JA, Tejjani K, Lloyd NM, Steijaert TH, van Haaren MM, Sliepen K, de Taeye SW, van Gils MJ, Crispin M, Strecker T, Bukreyev A, Ward AB, Sanders RW.
Cell Host & Microbe Dec. 14, 2022

The Lassa virus is endemic in parts of West Africa, and it causes hemorrhagic fever with high mortality. The development of a recombinant protein vaccine has been hampered by the instability of soluble Lassa virus glycoprotein complex (GPC) trimers, which disassemble into monomeric subunits after expression. Here, we use two-component protein nanoparticles consisting of trimeric and pentameric subunits to stabilize GPC in a trimeric conformation. These GPC nanoparticles present twenty prefusion GPC trimers on the surface of an icosahedral particle. Cryo-EM studies of GPC nanoparticles demonstrated a well-ordered structure and yielded a high-resolution structure of an unliganded GPC. These nanoparticles induced potent humoral immune responses in rabbits and protective immunity against the lethal Lassa virus challenge in guinea pigs. Additionally, we isolated a neutralizing antibody that mapped to the putative receptor-binding site, revealing a previously undefined site of vulnerability. Collectively, these findings offer potential approaches to vaccine and therapeutic design for the Lassa virus.

First exposure to the pandemic H1N1 virus induced broadly neutralizing antibodies targeting hemagglutinin head epitopes

Guthmiller JJ, Han J, Li L, Freyn AW, Liu STH, Stovicek O, Stamper CT, Dugan HL, Tepora ME, Utset HA, Bitar DJ, Hamel NJ, Changrob S, Zheng NY, Huang M, Krammer F, Nachbagauer R, Palese P, Ward AB, Wilson PC.
Science Translational Medicine Nov. 25, 2022

Broadly neutralizing antibodies are critical for protection against both drifted and shifted influenza viruses. Here, we reveal that first exposure to the 2009 pandemic H1N1 influenza virus recalls memory B cells that are specific to the conserved receptor-binding site (RBS) or lateral patch epitopes of the hemagglutinin (HA) head domain. Monoclonal antibodies (mAbs) generated against these epitopes are broadly neutralizing against H1N1 viruses spanning 40 years of viral evolution and provide potent protection in vivo. Lateral patch-targeting antibodies demonstrated near universal binding to H1 viruses, and RBS-binding antibodies commonly cross-reacted with H3N2 viruses and influenza B viruses. Lateral patch-targeting mAbs were restricted to expressing the variable heavy-chain gene VH3-23 with or without the variable kappa-chain gene VK1-33 and often had a Y-x-R motif within the heavy-chain complementarity determining region 3 to make key contacts with HA. Moreover, lateral patch antibodies that used both VH3-23 and VK1-33 maintained neutralizing capability with recent pH1N1 strains that acquired mutations near the lateral patch. RBS-binding mAbs used a diverse repertoire but targeted the RBS epitope similarly and made extensive contacts with the major antigenic site Sb. Together, our data indicate that RBS- and lateral patch-targeting clones are abundant within the human memory B cell pool, and universal vaccine strategies should aim to drive antibodies against both conserved head and stalk epitopes.

Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers

Ringe RP, Yasmeen A, Ozorowski G, Go EP, Pritchard LK, Guttman M, Ketas TA, Cottrell CA, Wilson IA, Sanders RW, Cupo A, Crispin M, Lee KK, Desaire H, Ward AB, Klasse PJ, Moore JP
Journal of Virology Nov. 25, 2022

ABSTRACT We have investigated factors that influence the production of native-like soluble, recombinant trimers based on the env genes of two isolates of human immunodeficiency virus type 1 (HIV-1), specifically 92UG037.8 (clade A) and CZA97.012 (clade C). When the recombinant trimers based on the env genes of isolates 92UG037.8 and CZA97.012 were made according to the SOSIP.664 design and purified by affinity chromatography using broadly neutralizing antibodies (bNAbs) against quaternary epitopes (PGT145 and PGT151, respectively), the resulting trimers are highly stable and they are fully native-like when visualized by negative-stain electron microscopy. They also have a native-like (i.e., abundant) oligomannose glycan composition and display multiple bNAb epitopes while occluding those for nonneutralizing antibodies. In contrast, uncleaved, histidine-tagged Foldon (Fd) domain-containing gp140 proteins (gp140 UNC -Fd-His), based on the same env genes, very rarely form native-like trimers, a finding that is consistent with their antigenic and biophysical properties and glycan composition. The addition of a 20-residue flexible linker (FL20) between the gp120 and gp41 ectodomain (gp41 ECTO ) subunits to make the uncleaved 92UG037.8 gp140-FL20 construct is not sufficient to create a native-like trimer, but a small percentage of native-like trimers were produced when an I559P substitution in gp41 ECTO was also present. The further addition of a disulfide bond (SOS) to link the gp120 and gp41 subunits in the uncleaved gp140-FL20-SOSIP protein increases native-like trimer formation to ∼20 to 30%. Analysis of the disulfide bond content shows that misfolded gp120 subunits are abundant in uncleaved CZA97.012 gp140 UNC -Fd-His proteins but very rare in native-like trimer populations. The design and stabilization method and the purification strategy are, therefore, all important influences on the quality of trimeric Env proteins and hence their suitability as vaccine components. IMPORTANCE Soluble, recombinant multimeric proteins based on the HIV-1 env gene are current candidate immunogens for vaccine trials in humans. These proteins are generally designed to mimic the native trimeric envelope glycoprotein (Env) that is the target of virus-neutralizing antibodies on the surfaces of virions. The underlying hypothesis is that an Env-mimetic protein may be able to induce antibodies that can neutralize the virus broadly and potently enough for a vaccine to be protective. Multiple different designs for Env-mimetic trimers have been put forth. Here, we used the CZA97.012 and 92UG037.8 env genes to compare some of these designs and determine which ones best mimic virus-associated Env trimers. We conclude that the most widely used versions of CZA97.012 and 92UG037.8 oligomeric Env proteins do not resemble the trimeric Env glycoprotein on HIV-1 viruses, which has implications for the design and interpretation of ongoing or proposed clinical trials of these proteins.

Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein

Behrens AJ, Vasiljevic S, Pritchard LK, Harvey DJ, Andev RS, Krumm SA, Struwe WB, Cupo A, Kumar A, Zitzmann N, Seabright GE, Kramer HB, Spencer DI, Royle L, Lee JH, Klasse PJ, Burton DR, Wilson IA, Ward AB, Sanders RW, Moore JP, Doores KJ, Crispin M
Cell Reports Nov. 17, 2022

The HIV-1 envelope glycoprotein trimer is covered by an array of N-linked glycans that shield it from immune surveillance. The high density of glycans on the trimer surface imposes steric constraints limiting the actions of glycan-processing enzymes, so that multiple under-processed structures remain on specific areas. These oligomannose glycans are recognized by broadly neutralizing antibodies (bNAbs) that are not thwarted by the glycan shield but, paradoxically, target it. Our site-specific glycosylation analysis of a soluble, recombinant trimer (BG505 SOSIP.664) maps the extremes of simplicity and diversity of glycan processing at individual sites and reveals a mosaic of dense clusters of oligomannose glycans on the outer domain. Although individual sites usually minimally affect the global integrity of the glycan shield, we identify examples of how deleting some glycans can subtly influence neutralization by bNAbs that bind at distant sites. The network of bNAb-targeted glycans should be preserved on vaccine antigens.

An Infectious Virus‐like Particle Built on a Programmable Icosahedral DNA Framework**

Xu Y, Yang YR, Shi Q, Ward AB, Huang K, Chen X, Wang W, Yang Y.
Angewandte Chemie International Edition Nov. 15, 2022

Viral genomes can be compressed into a near‐spherical nanochamber to form infectious particles. In order to mimic the virus morphology and packaging behavior, we invented a programmable icosahedral DNA nanoframe with enhanced rigidity and encapsulated the phiX174 bacteriophage genome. The packaging efficiency could be modulated through specific anchoring strands adjustment, and the trapped phage genome remained accessible for enzymatic operations. Moreover, the packed complex could infect Escherichia coli (E. coli) cells through bacterial uptake to produce plaques. This rigid icosahedral DNA architecture demonstrated a versatile platform to develop virus mimetic particles for convenient functional nucleic acid entrapment, manipulation and delivery. A de‐novo designed rigid icosahedral DNA framework was assembled to efficiently package single‐stranded phage genome inside it. The packaging behavior was precisely regulated and systematically investigated. The entrapped ssDNA was available for molecular operations due to the structure‘s permeability. Moreover, the phage mimetic particle could passively infect host bacteria and induce phage plaque.

High-Throughput Protein Engineering Improves the Antigenicity and Stability of Soluble HIV-1 Envelope Glycoprotein SOSIP Trimers

Sullivan JT, Sulli C, Nilo A, Yasmeen A, Ozorowski G, Sanders RW, Ward AB, Klasse PJ, Moore JP, Doranz BJ
Journal of Virology Nov. 4, 2022

ABSTRACT Soluble envelope glycoprotein (Env) trimers (SOSIP.664 gp140) are attractive HIV-1 vaccine candidates, with structures that mimic the native membrane-bound Env spike (gp160). Since engineering trimers can be limited by the difficulty of rationally predicting beneficial mutations, here we used a more comprehensive mutagenesis approach with the goal of identifying trimer variants with improved antigenic and stability properties. We created 341 cysteine pairs at predicted points of stabilization throughout gp140, 149 proline residue substitutions at every residue of the gp41 ectodomain, and 362 space-filling residue substitutions at every hydrophobic and aromatic residue in gp140. The parental protein target, the clade B strain B41 SOSIP.664 gp140, does not bind the broadly neutralizing antibody PGT151 and so was used here to identify improved variants that also provide insight into the structural basis for Env antigenicity. Each of the 852 mutants was expressed in human cells and screened for antigenicity using four different monoclonal antibodies (MAbs), including PGT151. We identified 29 trimer variants with antigenic improvements derived from each of the three mutagenesis strategies. We selected four variants (Q203F, T538F, I548F, and M629P) for more comprehensive biochemical, structural, and antigenicity analyses. The T538F substitution had the most beneficial effect overall, including restoration of the PGT151 epitope. The improved B41 SOSIP.664 trimer variants identified here may be useful for vaccine and structural studies. IMPORTANCE Soluble Env trimers have become attractive HIV-1 vaccine candidates, but the prototype designs are capable of further improvement through protein engineering. Using a high-throughput screening technology (shotgun mutagenesis) to create and evaluate 852 variants, we were able to identify sequence changes that were beneficial to the antigenicity and stability of soluble trimers based on the clade B B41 env gene. The strategies described here may be useful for identifying a wider range of antigenically and structurally improved soluble trimers based on multiple genotypes for use in programs intended to create a broadly protective HIV-1 vaccine.

Structure of the hepatitis C virus E1E2 glycoprotein complex

Torrents de la Peña A, Sliepen K, Eshun-Wilson L, Newby ML, Allen JD, Zon I, Koekkoek S, Chumbe A, Crispin M, Schinkel J, Lander GC, Sanders RW, Ward AB.
Science Oct. 21, 2022

Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma in humans and afflicts more than 58 million people worldwide. The HCV envelope E1 and E2 glycoproteins are essential for viral entry and comprise the primary antigenic target for neutralizing antibody responses. The molecular mechanisms of E1E2 assembly, as well as how the E1E2 heterodimer binds broadly neutralizing antibodies, remain elusive. Here, we present the cryo–electron microscopy structure of the membrane-extracted full-length E1E2 heterodimer in complex with three broadly neutralizing antibodies—AR4A, AT1209, and IGH505—at ~3.5-angstrom resolution. We resolve the interface between the E1 and E2 ectodomains and deliver a blueprint for the rational design of vaccine immunogens and antiviral drugs.

Antigen- and scaffold-specific antibody responses to protein nanoparticle immunogens

Kraft JC, Pham MN, Shehata L, Brinkkemper M, Boyoglu-Barnum S, Sprouse KR, Walls AC, Cheng S, Murphy M, Pettie D, Ahlrichs M, Sydeman C, Johnson M, Blackstone A, Ellis D, Ravichandran R, Fiala B, Wrenn S, Miranda M, Sliepen K, Brouwer PJM, Antanasijevic A, Veesler D, Ward AB, Kanekiyo M, Pepper M, Sanders RW, King NP.
Cell Reports Medicine Sept. 26, 2022

Protein nanoparticle scaffolds are increasingly used in next-generation vaccine designs, and several have established records of clinical safety and efficacy. Yet the rules for how immune responses specific to nanoparticle scaffolds affect the immunogenicity of displayed antigens have not been established. Here we define relationships between anti-scaffold and antigen-specific antibody responses elicited by protein nanoparticle immunogens. We report that dampening anti-scaffold responses by physical masking does not enhance antigen-specific antibody responses. In a series of immunogens that all use the same nanoparticle scaffold but display four different antigens, only HIV-1 envelope glycoprotein (Env) is subdominant to the scaffold. However, we also demonstrate that scaffold-specific antibody responses can competitively inhibit antigen-specific responses when the scaffold is provided in excess. Overall, our results suggest that anti-scaffold antibody responses are unlikely to suppress antigen-specific antibody responses for protein nanoparticle immunogens in which the antigen is immunodominant over the scaffold.

Title & Authors Journal Publication Date

Deep repertoire mining uncovers ultra-broad coronavirus neutralizing antibodies targeting multiple spike epitopes

Hurtado J, Rogers TF, Jaffe DB, Adams BA, Bangaru S, Garcia E, Capozzola T, Messmer T, Sharma P, Song G, Beutler N, He W, Dueker K, Musharrafieh R, Stubbington MJ, Burton DR, Andrabi R, Ward AB, McDonnell WJ, Briney B

bioRxiv March 28, 2023

Conformational antigenic heterogeneity as a cause of the persistent fraction in HIV-1 neutralization

Colin P, Ringe RP, Yasmeen A, Ozorowski G, Ketas TJ, Lee WH, Ward AB, Moore JP, Klasse PJ

Research Square Feb. 21, 2023

Bispecific antibodies combine breadth, potency, and avidity of parental antibodies to neutralize sarbecoviruses

Radić L, Sliepen K, Yin V, Brinkkemper M, Capella-Pujol J, Schriek AI, Torres JL, Bangaru S, Burger JA, Poniman M, Bontjer I, Bouhuijs JH, Gideonse D, Eggink D, Ward AB, R. Heck AJ, Van Gils MJ, Sanders RW, Schinkel J

Now Published: 10.1016/j.isci.2023.106540
bioRxiv Nov. 11, 2022

Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody to antigenically distinct omicron SARS-CoV-2 subvariants

Changrob S, Halfmann PJ, Liu H, Torres JL, McGrath JJ, Ozorowski G, Li L, Kuroda M, Maemura T, Huang M, Wilbanks GD, Zheng NY, Turner HL, Erickson SA, Fu Y, Singh G, Krammer F, Sather DN, Ward AB, Wilson IA, Kawaoka Y, Wilson PC

Now Published: 10.1172/JCI166844
bioRxiv Oct. 31, 2022

Broad SARS-CoV-2 Neutralization by Monoclonal and Bispecific Antibodies Derived from a Gamma-infected Individual

Guerra D, Beaumont T, Radić L, Kerster G, van der Straten K, Yuan M, Torres JL, Lee WH, Liu H, Poniman M, Bontjer I, Burger JA, Claireaux M, Caniels TG, Snitselaar JL, L Bijl TP, Kruijer S, Ozorowski G, Gideonse D, Sliepen K, Ward AB, Eggink D, de Bree GJ, Wilson IA, Sanders RW, van Gils MJ

Now Published: 10.1016/j.isci.2023.108009
bioRxiv Oct. 14, 2022

Structural basis of epitope selectivity and potent protection from malaria by PfCSP antibody L9

Martin GM, Fernández-Quintero ML, Lee WH, Pholcharee T, Eshun-Wilson L, Liedl KR, Pancera M, Seder RA, Wilson IA, Ward AB

Now Published: 10.1038/s41467-023-38509-2
bioRxiv Oct. 7, 2022