Publications
-
Title & Authors Journal Publication Date

Affinity-matured homotypic interactions induce spectrum of PfCSP structures that influence protection from malaria infection.


Martin GM, Torres JL, Pholcharee T, Oyen D, Flores-Garcia Y, Gibson G, Moskovitz R, Beutler N, Jung DD, Copps J, Lee WH, Gonzalez-Paez G, Emerling D, MacGill RS, Locke E, King CR, Zavala F, Wilson IA, Ward AB.
Nat Commun July 28, 2023

The generation of high-quality antibody responses to Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP), the primary surface antigen of Pf sporozoites, is paramount to the development of an effective malaria vaccine. Here we present an in-depth structural and functional analysis of a panel of potent antibodies encoded by the immunoglobulin heavy chain variable (IGHV) gene IGHV3-33, which is among the most prevalent and potent antibody families induced in the anti-PfCSP immune response and targets the Asn-Ala-Asn-Pro (NANP) repeat region. Cryo-electron microscopy (cryo-EM) reveals a remarkable spectrum of helical antibody-PfCSP structures stabilized by homotypic interactions between tightly packed fragments antigen binding (Fabs), many of which correlate with somatic hypermutation. We demonstrate a key role of these mutated homotypic contacts for high avidity binding to PfCSP and in protection from Pf malaria infection. Together, these data emphasize the importance of anti-homotypic affinity maturation in the frequent selection of IGHV3–33 antibodies and highlight key features underlying the potent protection of this antibody family. Here, the authors use cryo-EM to solve the structures of seven potent human antibodies, and demonstrate in vivo protection in a liver burden assay, using chimeric Plasmodium berghei sporozoites expressing Plasmodium falciparum circumsporozoite protein.

Profound structural conservation of chemically cross-linked HIV-1 envelope glycoprotein experimental vaccine antigens.


Martin GM, Russell RA, Mundsperger P, Harris S, Jovanoska L, Trajano LF, Schiffner T, Fabian K, Tolazzi M, Scarlatti G, McFarlane L, Cheeseman H, Aldon Y, Schermer EE, Breemen M, Sliepen K, Katinger D, Kunert R, Sanders RW, Shattock R, Ward AB, Sattentau QJ.
NPJ Vaccines July 13, 2023

Chemical cross-linking is used to stabilize protein structures with additional benefits of pathogen and toxin inactivation for vaccine use, but its use has been restricted by the potential for local or global structural distortion. This is of particular importance when the protein in question requires a high degree of structural conservation for inducing a biological outcome such as the elicitation of antibodies to conformationally sensitive epitopes. The HIV-1 envelope glycoprotein (Env) trimer is metastable and shifts between different conformational states, complicating its use as a vaccine antigen. Here we have used the hetero-bifunctional zero-length reagent 1-Ethyl-3-(3-Dimethylaminopropyl)-Carbodiimide (EDC) to cross-link two soluble Env trimers, selected well-folded trimer species using antibody affinity, and transferred this process to good manufacturing practice (GMP) for experimental medicine use. Cross-linking enhanced trimer stability to biophysical and enzyme attack. Cryo-EM analysis revealed that cross-linking retained the overall structure with root-mean-square deviations (RMSDs) between unmodified and cross-linked Env trimers of 0.4–0.5 Å. Despite this negligible distortion of global trimer structure, we identified individual inter-subunit, intra-subunit, and intra-protomer cross-links. Antigenicity and immunogenicity of the trimers were selectively modified by cross-linking, with cross-linked ConS retaining bnAb binding more consistently than ConM. Thus, the EDC cross-linking process improves trimer stability whilst maintaining protein folding, and is readily transferred to GMP, consistent with the more general use of this approach in protein-based vaccine design.

Increasing sensitivity of antibody-antigen interactions using photo-cross-linking.


Torrents de la Peña A, Sewall LM, de Paiva Froes Rocha R, Jackson AM, Pratap PP, Bangaru S, Cottrell CA, Mohanty S, Shaw AC, Ward AB.
Cell Rep Methods June 26, 2023

Understanding antibody-antigen interactions in a polyclonal immune response in humans and animal models is critical for rational vaccine design. Current approaches typically characterize antibodies that are functionally relevant or highly abundant. Here, we use photo-cross-linking and single-particle electron microscopy to increase antibody detection and unveil epitopes of low-affinity and low-abundance antibodies, leading to a broader structural characterization of polyclonal immune responses. We employed this approach across three different viral glycoproteins and showed increased sensitivity of detection relative to currently used methods. Results were most noticeable in early and late time points of a polyclonal immune response. Additionally, the use of photo-cross-linking revealed intermediate antibody binding states and demonstrated a distinctive way to study antibody binding mechanisms. This technique can be used to structurally characterize the landscape of a polyclonal immune response of patients in vaccination or post-infection studies at early time points, allowing for rapid iterative design of vaccine immunogens.

Fully synthetic platform to rapidly generate tetravalent bispecific nanobody-based immunoglobulins.


Misson Mindrebo L, Liu H, Ozorowski G, Tran Q, Woehl J, Khalek I, Smith JM, Barman S, Zhao F, Keating C, Limbo O, Verma M, Liu J, Stanfield RL, Zhu X, Turner HL, Sok D, Huang PS, Burton DR, Ward AB, Wilson IA, Jardine JG.
Proc Natl Acad Sci U S A June 13, 2023

Nanobodies bind a target antigen with a kinetic profile similar to a conventional antibody, but exist as a single heavy chain domain that can be readily multimerized to engage antigen via multiple interactions. Presently, most nanobodies are produced by immunizing camelids; however, platforms for animal-free production are growing in popularity. Here, we describe the development of a fully synthetic nanobody library based on an engineered human VH3-23 variable gene and a multispecific antibody-like format designed for biparatopic target engagement. To validate our library, we selected nanobodies against the SARS-CoV-2 receptor–binding domain and employed an on-yeast epitope binning strategy to rapidly map the specificities of the selected nanobodies. We then generated antibody-like molecules by replacing the VH and VL domains of a conventional antibody with two different nanobodies, designed as a molecular clamp to engage the receptor-binding domain biparatopically. The resulting bispecific tetra-nanobody immunoglobulins neutralized diverse SARS-CoV-2 variants with potencies similar to antibodies isolated from convalescent donors. Subsequent biochemical analyses confirmed the accuracy of the on-yeast epitope binning and structures of both individual nanobodies, and a tetra-nanobody immunoglobulin revealed that the intended mode of interaction had been achieved. This overall workflow is applicable to nearly any protein target and provides a blueprint for a modular workflow for the development of multispecific molecules.

Structural conservation of Lassa virus glycoproteins and recognition by neutralizing antibodies.


Perrett HR, Brouwer PJM, Hurtado J, Newby ML, Liu L, Müller-Kräuter H, Müller Aguirre S, Burger JA, Bouhuijs JH, Gibson G, Messmer T, Schieffelin JS, Antanasijevic A, Boons GJ, Strecker T, Crispin M, Sanders RW, Briney B, Ward AB.
Cell Rep May 30, 2023

Lassa fever is an acute hemorrhagic fever caused by the zoonotic Lassa virus (LASV). The LASV glycoprotein complex (GPC) mediates viral entry and is the sole target for neutralizing antibodies. Immunogen design is complicated by the metastable nature of recombinant GPCs and the antigenic differences among phylogenetically distinct LASV lineages. Despite the sequence diversity of the GPC, structures of most lineages are lacking. We present the development and characterization of prefusion-stabilized, trimeric GPCs of LASV lineages II, V, and VII, revealing structural conservation despite sequence diversity. High-resolution structures and biophysical characterization of the GPC in complex with GP1-A-specific antibodies suggest their neutralization mechanisms. Finally, we present the isolation and characterization of a trimer-preferring neutralizing antibody belonging to the GPC-B competition group with an epitope that spans adjacent protomers and includes the fusion peptide. Our work provides molecular detail information on LASV antigenic diversity and will guide efforts to design pan-LASV vaccines.

Conformational antigenic heterogeneity as a cause of the persistent fraction in HIV-1 neutralization.


Colin P, Ringe RP, Yasmeen A, Ozorowski G, Ketas TJ, Lee WH, Ward AB, Moore JP, Klasse PJ.
Retrovirology May 27, 2023

Conformational antigenic heterogeneityas a cause of the persistent fraction in HIV-1 neutralization


Colin P, Ringe RP, Yasmeen A, Ozorowski G, Ketas TJ, Lee WH, Ward AB, Moore JP, Klasse PJ
Retrovirology May 27, 2023

Background Neutralizing antibodies (NAbs) protect against HIV‑1 acquisition in animal models and show promisein treatment of infection. They act by binding to the viral envelope glycoprotein (Env), thereby blocking its recep‑tor interactions and fusogenic function. The potency of neutralization is largely determined by affinity. Less wellexplained is the persistent fraction, the plateau of remaining infectivity at the highest antibody concentrations.Results We observed different persistent fractions for neutralization of pseudovirus derived from two Tier‑2 iso‑lates of HIV‑1, BG505 (Clade A) and B41 (Clade B): it was pronounced for B41 but not BG505 neutralization by NAbPGT151, directed to the interface between the outer and transmembrane subunits of Env, and negligible for eithervirus by NAb PGT145 to an apical epitope. Autologous neutralization by poly‑ and monoclonal NAbs from rabbitsimmunized with soluble native‑like B41 trimer also left substantial persistent fractions. These NAbs largely target acluster of epitopes lining a hole in the dense glycan shield of Env around residue 289. We partially depleted B41‑virionpopulations by incubating them with PGT145‑ or PGT151‑conjugated beads. Each depletion reduced the sensitivityto the depleting NAb and enhanced it to the other. Autologous neutralization by the rabbit NAbs was decreased forPGT145‑depleted and enhanced for PGT151‑depleted B41 pseudovirus. Those changes in sensitivity encompassedboth potency and the persistent fraction. We then compared soluble native‑like BG505 and B41 Env trimers affinity‑purified by each of three NAbs: 2G12, PGT145, or PGT151. Surface plasmon resonance showed differences amongthe fractions in antigenicity, including kinetics and stoichiometry, congruently with the differential neutralization. Thelarge persistent fraction after PGT151 neutralization of B41 was attributable to low stoichiometry, which we explainedstructurally by clashes that the conformational plasticity of B41 Env causes.Conclusion Distinct antigenic forms even of clonal HIV‑1 Env, detectable among soluble native‑like trimer molecules,are distributed over virions and may profoundly mold neutralization of certain isolates by certain NAbs. Affinity puri‑fications with some antibodies may yield immunogens that preferentially expose epitopes for broadly active NAbs,shielding less cross‑reactive ones. NAbs reactive with multiple conformers will together reduce the persistent fractionafter passive and active immunization.

Structural basis of epitope selectivity and potent protection from malaria by PfCSP antibody L9.


Martin GM, Fernández-Quintero ML, Lee WH, Pholcharee T, Eshun-Wilson L, Liedl KR, Pancera M, Seder RA, Wilson IA, Ward AB.
Nat Commun May 17, 2023

A primary objective in malaria vaccine design is the generation of high-quality antibody responses against the circumsporozoite protein of the malaria parasite, Plasmodium falciparum (PfCSP). To enable rational antigen design, we solved a cryo-EM structure of the highly potent anti-PfCSP antibody L9 in complex with recombinant PfCSP. We found that L9 Fab binds multivalently to the minor (NPNV) repeat domain, which is stabilized by a unique set of affinity-matured homotypic, antibody-antibody contacts. Molecular dynamics simulations revealed a critical role of the L9 light chain in integrity of the homotypic interface, which likely impacts PfCSP affinity and protective efficacy. These findings reveal the molecular mechanism of the unique NPNV selectivity of L9 and emphasize the importance of anti-homotypic affinity maturation in protective immunity against P. falciparum. The cryo-EM structure of the highly potent malaria antibody L9 reveals a key role of light-chain derived homotypic interactions in antigen binding and parasite inhibition, enabling antibody engineering and next-generation malaria vaccine design.

Structural insights into the broad protection against H1 influenza viruses by a computationally optimized hemagglutinin vaccine.


Dzimianski JV, Han J, Sautto GA, O'Rourke SM, Cruz JM, Pierce SR, Ecker JW, Carlock MA, Nagashima KA, Mousa JJ, Ross TM, Ward AB, DuBois RM.
Commun Biol April 25, 2023

Influenza virus poses an ongoing human health threat with pandemic potential. Due to mutations in circulating strains, formulating effective vaccines remains a challenge. The use of computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) proteins is a promising vaccine strategy to protect against a wide range of current and future influenza viruses. Though effective in preclinical studies, the mechanistic basis driving the broad reactivity of COBRA proteins remains to be elucidated. Here, we report the crystal structure of the COBRA HA termed P1 and identify antigenic and glycosylation properties that contribute to its immunogenicity. We further report the cryo-EM structure of the P1-elicited broadly neutralizing antibody 1F8 bound to COBRA P1, revealing 1F8 to recognize an atypical receptor binding site epitope via an unexpected mode of binding. Structural studies of a computationally optimized broadly reactive antigen hemagglutinin in complex with a broadly neutralizing antibody reveal its immunogenic properties and provide insights into flu vaccine design.

Bispecific antibodies combine breadth, potency, and avidity of parental antibodies to neutralize sarbecoviruses.


Radić L, Sliepen K, Yin V, Brinkkemper M, Capella-Pujol J, Schriek AI, Torres JL, Bangaru S, Burger JA, Poniman M, Bontjer I, Bouhuijs JH, Gideonse D, Eggink D, Ward AB, Heck AJR, Van Gils MJ, Sanders RW, Schinkel J.
iScience April 21, 2023

SARS-CoV-2 variants evade current monoclonal antibody therapies. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies taking advantage of the avidity and synergy provided by targeting different epitopes. Here we used controlled Fab-arm exchange to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader antibodies that also neutralize SARS-CoV. We demonstrated that the parental antibodies rely on avidity for neutralization using bsAbs containing one irrelevant Fab arm. Using mass photometry to measure the formation of antibody:spike complexes, we determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike, observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent agents to combat circulating and future SARS-like coronaviruses.

Germline-targeting HIV-1 Env vaccination induces VRC01-class antibodies with rare insertions.


Caniels TG, Medina-Ramírez M, Zhang J, Sarkar A, Kumar S, LaBranche A, Derking R, Allen JD, Snitselaar JL, Capella-Pujol J, Sánchez IDM, Yasmeen A, Diaz M, Aldon Y, Bijl TPL, Venkatayogi S, Martin Beem JS, Newman A, Jiang C, Lee WH, Pater M, Burger JA, van Breemen MJ, de Taeye SW, Rantalainen K, LaBranche C, Saunders KO, Montefiori D, Ozorowski G, Ward AB, Crispin M, Moore JP, Klasse PJ, Haynes BF, Wilson IA, Wiehe K, Verkoczy L, Sanders RW.
Cell Rep Med April 18, 2023

Targeting germline (gl-) precursors of broadly neutralizing antibodies (bNAbs) is acknowledged as an important strategy for HIV-1 vaccines. The VRC01-class of bNAbs is attractive because of its distinct genetic signature. However, VRC01-class bNAbs often require extensive somatic hypermutation, including rare insertions and deletions. We describe a BG505 SOSIP trimer, termed GT1.2, to optimize binding to gl-CH31, the unmutated common precursor of the CH30-34 bNAb lineage that acquired a large CDRH1 insertion. The GT1.2 trimer activates gl-CH31 naive B cells in knock-in mice, and B cell responses could be matured by selected boosting immunogens to generate cross-reactive Ab responses. Next-generation B cell sequencing reveals selection for VRC01-class mutations, including insertions in CDRH1 and FWR3 at positions identical to VRC01-class bNAbs, as well as CDRL1 deletions and/or glycine substitutions to accommodate the N276 glycan. These results provide proof of concept for vaccine-induced affinity maturation of B cell lineages that require rare insertions and deletions.

Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody against antigenically distinct Omicron subvariants.


Changrob S, Halfmann PJ, Liu H, Torres JL, McGrath JJC, Ozorowski G, Li L, Wilbanks GD, Kuroda M, Maemura T, Huang M, Zheng NY, Turner HL, Erickson SA, Fu Y, Yasuhara A, Singh G, Monahan B, Mauldin J, Srivastava K, Simon V, Krammer F, Sather DN, Ward AB, Wilson IA, Kawaoka Y, Wilson PC.
J Clin Invest April 17, 2023

The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with wildtype SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with wildtype, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain (RBD) via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared to diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential, and may inform target-driven vaccine design against future SARS-CoV-2 variants.

Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimmers as HIV-1 vaccine candidates.


Zhang YN, Paynter J, Antanasijevic A, Allen JD, Eldad M, Lee YZ, Copps J, Newby ML, He L, Chavez D, Frost P, Goodroe A, Dutton J, Lanford R, Chen C, Wilson IA, Crispin M, Ward AB, Zhu J.
Nat Commun April 8, 2023

Uncleaved prefusion-optimized (UFO) design can stabilize diverse HIV-1 envelope glycoproteins (Envs). Single-component, self-assembling protein nanoparticles (1c-SApNP) can display 8 or 20 native-like Env trimers as vaccine candidates. We characterize the biophysical, structural, and antigenic properties of 1c-SApNPs that present the BG505 UFO trimer with wildtype and modified glycans. For 1c-SApNPs, glycan trimming improves recognition of the CD4 binding site without affecting broadly neutralizing antibodies (bNAbs) to major glycan epitopes. In mice, rabbits, and nonhuman primates, glycan trimming increases the frequency of vaccine responders (FVR) and steers antibody responses away from immunodominant glycan holes and glycan patches. The mechanism of vaccine-induced immunity is examined in mice. Compared with the UFO trimer, the multilayered E2p and I3-01v9 1c-SApNPs show 420 times longer retention in lymph node follicles, 20-32 times greater presentation on follicular dendritic cell dendrites, and up-to-4 times stronger germinal center reactions. These findings can inform future HIV-1 vaccine development. Here the authors present an HIV-1 vaccine strategy that combines Env stabilization, nanoparticle display, and glycan trimming, which improves neutralizing antibody responses, frequency of vaccine responders, and germinal center reactions in animal models.

Respiratory viruses: New frontiers-a Keystone Symposia report.


Cable J, Sun J, Cheon IS, Vaughan AE, Castro IA, Stein SR, López CB, Gostic KM, Openshaw PJM, Ellebedy AH, Wack A, Hutchinson E, Thomas MM, Langlois RA, Lingwood D, Baker SF, Folkins M, Foxman EF, Ward AB, Schwemmle M, Russell AB, Chiu C, Ganti K, Subbarao K, Sheahan TP, Penaloza-MacMaster P, Eddens T.
Ann N Y Acad Sci April 1, 2023

Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS‐CoV‐2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever‐evolving viruses that develop resistance, leaving therapy efficacy either short‐lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium “Respiratory Viruses: New Frontiers.” Researchers presented new insights into viral biology and virus–host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad. Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS‐CoV‐2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. On June 29 to July 2, 2022, researchers met for the Keystone symposium “Respiratory Viruses: New Frontiers”. The meeting was held jointly with the symposium “Viral Immunity: Basic Mechanisms and Therapeutic Applications.” Researchers presented new insights into viral biology and virus‐host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.

Improving the secretion of designed protein assemblies through negative design of cryptic transmembrane domains.


Wang JYJ, Khmelinskaia A, Sheffler W, Miranda MC, Antanasijevic A, Borst AJ, Torres SV, Shu C, Hsia Y, Nattermann U, Ellis D, Walkey C, Ahlrichs M, Chan S, Kang A, Nguyen H, Sydeman C, Sankaran B, Wu M, Bera AK, Carter L, Fiala B, Murphy M, Baker D, Ward AB, King NP.
Proc Natl Acad Sci U S A March 14, 2023

Computationally designed protein nanoparticles have recently emerged as a promising platform for the development of new vaccines and biologics. For many applications, secretion of designed nanoparticles from eukaryotic cells would be advantageous, but in practice, they often secrete poorly. Here we show that designed hydrophobic interfaces that drive nanoparticle assembly are often predicted to form cryptic transmembrane domains, suggesting that interaction with the membrane insertion machinery could limit efficient secretion. We develop a general computational protocol, the Degreaser, to design away cryptic transmembrane domains without sacrificing protein stability. The retroactive application of the Degreaser to previously designed nanoparticle components and nanoparticles considerably improves secretion, and modular integration of the Degreaser into design pipelines results in new nanoparticles that secrete as robustly as naturally occurring protein assemblies. Both the Degreaser protocol and the nanoparticles we describe may be broadly useful in biotechnological applications.

-
Title & Authors Journal Publication Date

Focusing antibody responses to the fusion peptide in rhesus macaques.


Cottrell CA, Pratap PP, Cirelli KM, Carnathan DG, Enemuo CA, Antanasijevic A, Ozorowski G, Sewall LM, Gao H, Greene KM, Allen JD, Ngo JT, Choe Y, Nogal B, Silva M, Bhiman J, Pauthner M, Irvine DJ, Montefiori D, Crispin M, Burton DR, Silvestri G, Crotty S, Ward AB.

bioRxiv June 27, 2023

Structure of mechanically activated ion channel OSCA2.3 reveals mobile elements in the transmembrane domain.


Jojoa-Cruz S, Burendei B, Lee WH, Ward AB.

Now Published: 10.1016/j.str.2023.11.009
bioRxiv June 15, 2023

Ab initio prediction of specific phospholipid complexes and membrane association of HIV-1 MPER antibodies by multi-scale simulations


Maillie C, Golden J, Wilson IA, Ward AB, Mravic M

bioRxiv May 4, 2023

Broadly neutralizing antibodies targeting a conserved silent face of spike RBD resist extreme SARS-CoV-2 antigenic drift


Song G, Yuan M, Liu H, Capozzola T, Lin RN, Torres JL, He WT, Musharrafieh R, Dueker K, Zhou P, Callaghan S, Mishra N, Yong P, Anzanello F, Avillion G, Lina Vo A, Li X, Makhdoomi M, Feng Z, Zhu X, Peng L, Nemazee D, Safonova Y, Briney B, Ward AB, Burton DR, Wilson IA, Andrabi R

bioRxiv April 26, 2023

Deep repertoire mining uncovers ultra-broad coronavirus neutralizing antibodies targeting multiple spike epitopes.


Hurtado J, Rogers TF, Jaffe DB, Adams BA, Bangaru S, Garcia E, Capozzola T, Messmer T, Sharma P, Song G, Beutler N, He W, Dueker K, Musharrafieh R, Stubbington MJT, Burton DR, Andrabi R, Ward AB, McDonnell WJ, Briney B.

Now Published: 10.1016/j.celrep.2024.114307
bioRxiv March 31, 2023