Title & Authors | Journal | Publication Date |
---|---|---|
Glycan heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. |
PLoS Pathog | Oct. 1, 2023 |
Neutralizing antibodies (NAbs) to multiple epitopes on the HIV-1-envelope glycoprotein (Env) have been isolated from infected persons. The potency of NAbs is measured more often than the size of the persistent fraction o f infectivity at maximum neutralization, which may also influence preventive efficacy of active or passive immunization and the therapeutic outcome of the latter. Many NAbs neutralize HIV-1 CZA97.012, a clone of a Clade-C isolate, to ~100%. But here NAb PGT151, directed to a fusion-peptide epitope, left a persistent fraction of 15%. NAb PGT145, ligating the Env-trimer apex, left no detectable persistent fraction. The divergence in persistent fractions was further analyzed by depletion of pseudoviral populations of the most PGT151- and PGT145-reactive virions. Thereby, neutralization by the non-depleting NAb increased, whereas neutralization by the depleting NAb decreased. Furthermore, depletion by PGT151 increased sensitivity to autologous neutralization by sera from rabbits immunized with soluble native-like CZA97.012 trimer: substantial persistent fractions were reduced. NAbs in these sera target epitopes comprising residue D411 at the V4-β19 transition in a defect of the glycan shield on CZA97.012 Env. NAb binding to affinity-fractionated soluble native-like CZA97.012 trimer differed commensurately with neutralization in analyses by ELISA and surface plasmon resonance. Glycan differences between PGT151- and PGT145-purified trimer fractions were then demonstrated by mass spectrometry, providing one explanation for the differential antigenicity. These differences were interpreted in relation to a new structure at 3.4-Å resolution of the soluble CZA97.012 trimer determined by cryo-electron microscopy. The trimer adopted a closed conformation, refuting apex opening as the cause of reduced PGT145 binding to the PGT151-purified form. The evidence suggests that differences in binding and neutralization after trimer purification or pseudovirus depletion with PGT145 or PGT151 are caused by variation in glycosylation, and that some glycan variants affect antigenicity through direct effects on antibody contacts, whereas others act allosterically. |
||
A MERS-CoV antibody neutralizes a pre-emerging group 2c bat coronavirus. |
Sci Transl Med | Sept. 27, 2023 |
|
||
The smallest functional antibody fragment: Ultralong CDR H3 antibody knob regions potently neutralize SARS-CoV-2. |
Proc Natl Acad Sci U S A | Sept. 26, 2023 |
Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This “knob” domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics. |
||
Protocol for analyzing antibody responses to glycoprotein antigens using electron-microscopy-based polyclonal epitope mapping. |
STAR Protoc | Sept. 15, 2023 |
Electron microscopy-based polyclonal epitope mapping (EMPEM) can delineate epitope specificities of serum antibodies to a given antigen following vaccination or infection. Here, we present a protocol for the EMPEM method for rapid high-throughput assessment of antibody responses to glycoprotein antigens in vaccination and infection studies. We describe steps for antibody isolation and digestion, antigen complex and purification, and electron microscope imaging. We then detail procedures for processing and analysis of EMPEM data. For complete details on the use and execution of this protocol, please refer to Bianchi et al. (2018). 1 |
||
A Lassa virus mRNA vaccine confers protection but does not require neutralizing antibody in a guinea pig model of infection. |
Nat Commun | Sept. 12, 2023 |
Lassa virus is a member of the Arenaviridae family, which causes human infections ranging from asymptomatic to severe hemorrhagic disease with a high case fatality rate. We have designed and generated lipid nanoparticle encapsulated, modified mRNA vaccines that encode for the wild-type Lassa virus strain Josiah glycoprotein complex or the prefusion stabilized conformation of the Lassa virus glycoprotein complex. Hartley guinea pigs were vaccinated with two 10 µg doses, 28 days apart, of either construct. Vaccination induced strong binding antibody responses, specific to the prefusion conformation of glycoprotein complex, which were significantly higher in the prefusion stabilized glycoprotein complex construct group and displayed strong Fc-mediated effects. However, Lassa virus-neutralizing antibody activity was detected in some but not all animals. Following the challenge with a lethal dose of the Lassa virus, all vaccinated animals were protected from death and severe disease. Although the definitive mechanism of protection is still unknown, and assessment of the cell-mediated immune response was not investigated in this study, these data demonstrate the promise of mRNA as a vaccine platform against the Lassa virus and that protection against Lassa virus can be achieved in the absence of virus-neutralizing antibodies. Lassa virus infections in humans can result in severe disease, including hemorrhagic fever. Here the authors describe an mRNA-based Lassa virus vaccine that shows protection without requirement for neutralizing antibody in a guinea pig model of infection. |
||
Human anti-N1 monoclonal antibodies elicited by pandemic H1N1 virus infection broadly inhibit HxN1 viruses in vitro and in vivo. |
Immunity | Aug. 8, 2023 |
Neuraminidase (NA) is one of the two influenza virus surface glycoproteins, and antibodies that target it are an independent correlate of protection. However, our current understanding of NA antigenicity is incomplete. Here, we describe human monoclonal antibodies (mAbs) from a patient with a pandemic H1N1 virus infection in 2009. Two mAbs exhibited broad reactivity and inhibited NA enzyme activity of seasonal H1N1 viruses circulating before and after 2009, as well as viruses with avian or swine N1s. The mAbs provided robust protection from lethal challenge with human H1N1 and avian H5N1 viruses in mice, and both target an epitope on the lateral face of NA. In , we identified two broadly protective NA antibodies that share a novel epitope, inhibited NA activity, and provide protection against virus challenge in mice. Our work reaffirms that NA should be included as a target in future broadly protective or universal influenza virus vaccines. |
||
Direct observation of the conformational states of PIEZO1. |
Nature | Aug. 1, 2023 |
|
||
Affinity-matured homotypic interactions induce spectrum of PfCSP structures that influence protection from malaria infection. |
Nat Commun | July 28, 2023 |
The generation of high-quality antibody responses to Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP), the primary surface antigen of Pf sporozoites, is paramount to the development of an effective malaria vaccine. Here we present an in-depth structural and functional analysis of a panel of potent antibodies encoded by the immunoglobulin heavy chain variable (IGHV) gene IGHV3-33, which is among the most prevalent and potent antibody families induced in the anti-PfCSP immune response and targets the Asn-Ala-Asn-Pro (NANP) repeat region. Cryo-electron microscopy (cryo-EM) reveals a remarkable spectrum of helical antibody-PfCSP structures stabilized by homotypic interactions between tightly packed fragments antigen binding (Fabs), many of which correlate with somatic hypermutation. We demonstrate a key role of these mutated homotypic contacts for high avidity binding to PfCSP and in protection from Pf malaria infection. Together, these data emphasize the importance of anti-homotypic affinity maturation in the frequent selection of IGHV3–33 antibodies and highlight key features underlying the potent protection of this antibody family. Here, the authors use cryo-EM to solve the structures of seven potent human antibodies, and demonstrate in vivo protection in a liver burden assay, using chimeric Plasmodium berghei sporozoites expressing Plasmodium falciparum circumsporozoite protein. |
||
Profound structural conservation of chemically cross-linked HIV-1 envelope glycoprotein experimental vaccine antigens. |
NPJ Vaccines | July 13, 2023 |
Chemical cross-linking is used to stabilize protein structures with additional benefits of pathogen and toxin inactivation for vaccine use, but its use has been restricted by the potential for local or global structural distortion. This is of particular importance when the protein in question requires a high degree of structural conservation for inducing a biological outcome such as the elicitation of antibodies to conformationally sensitive epitopes. The HIV-1 envelope glycoprotein (Env) trimer is metastable and shifts between different conformational states, complicating its use as a vaccine antigen. Here we have used the hetero-bifunctional zero-length reagent 1-Ethyl-3-(3-Dimethylaminopropyl)-Carbodiimide (EDC) to cross-link two soluble Env trimers, selected well-folded trimer species using antibody affinity, and transferred this process to good manufacturing practice (GMP) for experimental medicine use. Cross-linking enhanced trimer stability to biophysical and enzyme attack. Cryo-EM analysis revealed that cross-linking retained the overall structure with root-mean-square deviations (RMSDs) between unmodified and cross-linked Env trimers of 0.4–0.5 Å. Despite this negligible distortion of global trimer structure, we identified individual inter-subunit, intra-subunit, and intra-protomer cross-links. Antigenicity and immunogenicity of the trimers were selectively modified by cross-linking, with cross-linked ConS retaining bnAb binding more consistently than ConM. Thus, the EDC cross-linking process improves trimer stability whilst maintaining protein folding, and is readily transferred to GMP, consistent with the more general use of this approach in protein-based vaccine design. |
||
Increasing sensitivity of antibody-antigen interactions using photo-cross-linking. |
Cell Rep Methods | June 26, 2023 |
Understanding antibody-antigen interactions in a polyclonal immune response in humans and animal models is critical for rational vaccine design. Current approaches typically characterize antibodies that are functionally relevant or highly abundant. Here, we use photo-cross-linking and single-particle electron microscopy to increase antibody detection and unveil epitopes of low-affinity and low-abundance antibodies, leading to a broader structural characterization of polyclonal immune responses. We employed this approach across three different viral glycoproteins and showed increased sensitivity of detection relative to currently used methods. Results were most noticeable in early and late time points of a polyclonal immune response. Additionally, the use of photo-cross-linking revealed intermediate antibody binding states and demonstrated a distinctive way to study antibody binding mechanisms. This technique can be used to structurally characterize the landscape of a polyclonal immune response of patients in vaccination or post-infection studies at early time points, allowing for rapid iterative design of vaccine immunogens. |
||
Fully synthetic platform to rapidly generate tetravalent bispecific nanobody-based immunoglobulins. |
Proc Natl Acad Sci U S A | June 13, 2023 |
Nanobodies bind a target antigen with a kinetic profile similar to a conventional antibody, but exist as a single heavy chain domain that can be readily multimerized to engage antigen via multiple interactions. Presently, most nanobodies are produced by immunizing camelids; however, platforms for animal-free production are growing in popularity. Here, we describe the development of a fully synthetic nanobody library based on an engineered human VH3-23 variable gene and a multispecific antibody-like format designed for biparatopic target engagement. To validate our library, we selected nanobodies against the SARS-CoV-2 receptor–binding domain and employed an on-yeast epitope binning strategy to rapidly map the specificities of the selected nanobodies. We then generated antibody-like molecules by replacing the VH and VL domains of a conventional antibody with two different nanobodies, designed as a molecular clamp to engage the receptor-binding domain biparatopically. The resulting bispecific tetra-nanobody immunoglobulins neutralized diverse SARS-CoV-2 variants with potencies similar to antibodies isolated from convalescent donors. Subsequent biochemical analyses confirmed the accuracy of the on-yeast epitope binning and structures of both individual nanobodies, and a tetra-nanobody immunoglobulin revealed that the intended mode of interaction had been achieved. This overall workflow is applicable to nearly any protein target and provides a blueprint for a modular workflow for the development of multispecific molecules. |
||
Structural conservation of Lassa virus glycoproteins and recognition by neutralizing antibodies. |
Cell Rep | May 30, 2023 |
Lassa fever is an acute hemorrhagic fever caused by the zoonotic Lassa virus (LASV). The LASV glycoprotein complex (GPC) mediates viral entry and is the sole target for neutralizing antibodies. Immunogen design is complicated by the metastable nature of recombinant GPCs and the antigenic differences among phylogenetically distinct LASV lineages. Despite the sequence diversity of the GPC, structures of most lineages are lacking. We present the development and characterization of prefusion-stabilized, trimeric GPCs of LASV lineages II, V, and VII, revealing structural conservation despite sequence diversity. High-resolution structures and biophysical characterization of the GPC in complex with GP1-A-specific antibodies suggest their neutralization mechanisms. Finally, we present the isolation and characterization of a trimer-preferring neutralizing antibody belonging to the GPC-B competition group with an epitope that spans adjacent protomers and includes the fusion peptide. Our work provides molecular detail information on LASV antigenic diversity and will guide efforts to design pan-LASV vaccines. |
||
Conformational antigenic heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. |
Retrovirology | May 27, 2023 |
|
||
Conformational antigenic heterogeneityas a cause of the persistent fraction in HIV-1 neutralization |
Retrovirology | May 27, 2023 |
Background Neutralizing antibodies (NAbs) protect against HIV‑1 acquisition in animal models and show promisein treatment of infection. They act by binding to the viral envelope glycoprotein (Env), thereby blocking its recep‑tor interactions and fusogenic function. The potency of neutralization is largely determined by affinity. Less wellexplained is the persistent fraction, the plateau of remaining infectivity at the highest antibody concentrations.Results We observed different persistent fractions for neutralization of pseudovirus derived from two Tier‑2 iso‑lates of HIV‑1, BG505 (Clade A) and B41 (Clade B): it was pronounced for B41 but not BG505 neutralization by NAbPGT151, directed to the interface between the outer and transmembrane subunits of Env, and negligible for eithervirus by NAb PGT145 to an apical epitope. Autologous neutralization by poly‑ and monoclonal NAbs from rabbitsimmunized with soluble native‑like B41 trimer also left substantial persistent fractions. These NAbs largely target acluster of epitopes lining a hole in the dense glycan shield of Env around residue 289. We partially depleted B41‑virionpopulations by incubating them with PGT145‑ or PGT151‑conjugated beads. Each depletion reduced the sensitivityto the depleting NAb and enhanced it to the other. Autologous neutralization by the rabbit NAbs was decreased forPGT145‑depleted and enhanced for PGT151‑depleted B41 pseudovirus. Those changes in sensitivity encompassedboth potency and the persistent fraction. We then compared soluble native‑like BG505 and B41 Env trimers affinity‑purified by each of three NAbs: 2G12, PGT145, or PGT151. Surface plasmon resonance showed differences amongthe fractions in antigenicity, including kinetics and stoichiometry, congruently with the differential neutralization. Thelarge persistent fraction after PGT151 neutralization of B41 was attributable to low stoichiometry, which we explainedstructurally by clashes that the conformational plasticity of B41 Env causes.Conclusion Distinct antigenic forms even of clonal HIV‑1 Env, detectable among soluble native‑like trimer molecules,are distributed over virions and may profoundly mold neutralization of certain isolates by certain NAbs. Affinity puri‑fications with some antibodies may yield immunogens that preferentially expose epitopes for broadly active NAbs,shielding less cross‑reactive ones. NAbs reactive with multiple conformers will together reduce the persistent fractionafter passive and active immunization. |
Title & Authors | Journal | Publication Date |
---|---|---|
Germline-targeting chimpanzee SIV Envelopes induce V2-apex broadly neutralizing-like B cell precursors in a rhesus macaque infection model |
bioRxiv | Sept. 21, 2023 |
Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines Now Published: 10.1038/s41541-024-00862-8 |
bioRxiv | Aug. 27, 2023 |
Immune memory shapes human polyclonal antibody responses to H2N2 vaccination. Now Published: 10.1016/j.celrep.2024.114171 |
bioRxiv | Aug. 24, 2023 |
Glycan heterogeneity as a cause of the persistent fraction in HIV-1 neutralization Now Published: 10.1371/journal.ppat.1011601 |
bioRxiv | Aug. 8, 2023 |
Focusing antibody responses to the fusion peptide in rhesus macaques. |
bioRxiv | June 27, 2023 |
Structure of mechanically activated ion channel OSCA2.3 reveals mobile elements in the transmembrane domain. Now Published: 10.1016/j.str.2023.11.009 |
bioRxiv | June 15, 2023 |