Publications
-
Title & Authors Journal Publication Date

Visualization of the HIV-1 Env glycan shield across scales


Berndsen ZT, Chakraborty S, Wang X, Cottrell CA, Torres JL, Diedrich JK, López CA, Yates JR 3rd, van Gils MJ, Paulson JC, Gnanakaran S, Ward AB.
Proceedings of the National Academy of Sciences of the United States of America Oct. 22, 2020

The dense array of N-linked glycans on the HIV-1 envelope glycoprotein (Env), known as the “glycan shield,” is a key determinant of immunogenicity, yet intrinsic heterogeneity confounds typical structure–function analysis. Here, we present an integrated approach of single-particle electron cryomicroscopy (cryo-EM), computational modeling, and site-specific mass spectrometry (MS) to probe glycan shield structure and behavior at multiple levels. We found that dynamics lead to an extensive network of interglycan interactions that drive the formation of higher-order structure within the glycan shield. This structure defines diffuse boundaries between buried and exposed protein surface and creates a mapping of potentially immunogenic sites on Env. Analysis of Env expressed in different cell lines revealed how cryo-EM can detect subtle changes in glycan occupancy, composition, and dynamics that impact glycan shield structure and epitope accessibility. Importantly, this identified unforeseen changes in the glycan shield of Env obtained from expression in the same cell line used for vaccine production. Finally, by capturing the enzymatic deglycosylation of Env in a time-resolved manner, we found that highly connected glycan clusters are resistant to digestion and help stabilize the prefusion trimer, suggesting the glycan shield may function beyond immune evasion.

Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate


Bangaru S, Ozorowski G, Turner HL, Antanasijevic A, Huang D, Wang X, Torres JL, Diedrich JK, Tian JH, Portnoff AD, Patel N, Massare MJ, Yates JR 3rd, Nemazee D, Paulson JC, Glenn G, Smith G, Ward AB.
Science Oct. 20, 2020

Vaccine efforts to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the current coronavirus disease 2019 (COVID-19) pandemic, are focused on SARS-CoV-2 spike glycoprotein, the primary target for neutralizing antibodies. We performed cryo–election microscopy and site-specific glycan analysis of one of the leading subunit vaccine candidates from Novavax, which is based on a full-length spike protein formulated in polysorbate 80 detergent. Our studies reveal a stable prefusion conformation of the spike immunogen with slight differences in the S1 subunit compared with published spike ectodomain structures. We also observed interactions between the spike trimers, allowing formation of higher-order spike complexes. This study confirms the structural integrity of the full-length spike protein immunogen and provides a basis for interpreting immune responses to this multivalent nanoparticle immunogen.

Polyreactive Broadly Neutralizing B cells Are Selected to Provide Defense against Pandemic Threat Influenza Viruses


Guthmiller JJ, Lan LY, Fernández-Quintero ML, Han J, Utset HA, Bitar DJ, Hamel NJ, Stovicek O, Li L, Tepora M, Henry C, Neu KE, Dugan HL, Borowska MT, Chen YQ, Liu STH, Stamper CT, Zheng NY, Huang M, Palm AE, García-Sastre A, Nachbagauer R, Palese P, Coughlan L, Krammer F, Ward AB, Liedl KR, Wilson PC.
Immunity Oct. 17, 2020

Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.

Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers


Schorcht A, van den Kerkhof TLGM, Cottrell CA, Allen JD, Torres JL, Behrens AJ, Schermer EE, Burger JA, de Taeye SW, de la Peña AT, Bontjer I, Gumbs S, Ozorowski G, LaBranche CC, de Val N, Yasmeen A, Klasse PJ, Montefiori DC, Moore JP, Schuitemaker H, Crispin M, van Gils MJ, Ward AB, Sanders RW.
Journal of Virology Sept. 30, 2020

The induction of broadly neutralizing antibodies (bNAbs) is a major goal in vaccine research. HIV-1-infected individuals that develop exceptionally strong bNAb responses, termed elite neutralizers, can inform vaccine design by providing blueprints for the induction of similar bNAb responses. We describe a new recombinant native-like envelope glycoprotein (Env) SOSIP trimer, termed AMC009, based on the viral founder sequences of an elite neutralizer. The subtype B AMC009 SOSIP protein formed stable native-like trimers that displayed multiple bNAb epitopes. Overall, its structure at 4.3-Å resolution was similar to that of BG505 SOSIP.664. The AMC009 trimer resembled one from a second elite neutralizer, AMC011, in having a dense and complete glycan shield. When tested as immunogens in rabbits, the AMC009 trimers did not induce autologous neutralizing antibody (NAb) responses efficiently while the AMC011 trimers did so very weakly, outcomes that may reflect the completeness of their glycan shields. The AMC011 trimer induced antibodies that occasionally cross-neutralized heterologous tier 2 viruses, sometimes at high titer. Cross-neutralizing antibodies were more frequently elicited by a trivalent combination of AMC008, AMC009, and AMC011 trimers, all derived from subtype B viruses. Each of these three individual trimers could deplete the NAb activity from the rabbit sera. Mapping the polyclonal sera by electron microscopy revealed that antibodies of multiple specificities could bind to sites on both autologous and heterologous trimers. These results advance our understanding of how to use Env trimers in multivalent vaccination regimens and the immunogenicity of trimers derived from elite neutralizers. IMPORTANCE Elite neutralizers, i.e., individuals who developed unusually broad and potent neutralizing antibody responses, might serve as blueprints for HIV-1 vaccine design. Here, we studied the immunogenicity of native-like recombinant envelope glycoprotein (Env) trimers based on viral sequences from elite neutralizers. While immunization with single trimers from elite neutralization did not recapitulate the breadth and potency of neutralization observed in these infected individuals, a combination of three subtype B Env trimers from elite neutralizers resulted in some neutralization breadth within subtype B viruses. These results should guide future efforts to design vaccines to induce broadly neutralizing antibodies.

An Alternative Binding Mode of IGHV3-53 Antibodies to the SARS-CoV-2 Receptor Binding Domain


Wu NC, Yuan M, Liu H, Lee CD, Zhu X, Bangaru S, Torres JL, Caniels TG, Brouwer PJM, van Gils MJ, Sanders RW, Ward AB, Wilson IA
Cell Reports Sept. 29, 2020

IGHV3-53-encoded neutralizing antibodies are commonly elicited during SARS-CoV-2 infection and target the receptor-binding domain (RBD) of the spike (S) protein. Such IGHV3-53 antibodies generally have a short CDR H3 because of structural constraints in binding the RBD (mode A). However, a small subset of IGHV3-53 antibodies to the RBD contain a longer CDR H3. Crystal structures of two IGHV3-53 neutralizing antibodies here demonstrate that a longer CDR H3 can be accommodated in a different binding mode (mode B). These two classes of IGHV3-53 antibodies both target the ACE2 receptor binding site, but with very different angles of approach and molecular interactions. Overall, these findings emphasize the versatility of IGHV3-53 in this common antibody response to SARS-CoV-2, where conserved IGHV3-53 germline-encoded features can be combined with very different CDR H3 lengths and light chains for SARS-CoV-2 RBD recognition and virus neutralization.

SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2


Clausen TM, Sandoval DR, Spliid CB, Pihl J, Perrett HR, Painter CD, Narayanan A, Majowicz SA, Kwong EM, McVicar RN, Thacker BE, Glass CA, Yang Z, Torres JL, Golden GJ, Bartels PL, Porell RN, Garretson AF, Laubach L, Feldman J, Yin X, Pu Y, Hauser BM, Caradonna TM, Kellman BP, Martino C, Gordts PLSM, Chanda SK, Schmidt AG, Godula K, Leibel SL, Jose J, Corbett KD, Ward AB, Carlin AF, Esko JD
Cell Sept. 14, 2020

We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.

Mapping Neutralizing Antibody Epitope Specificities to an HIV Env Trimer in Immunized and in Infected Rhesus Macaques


Zhao F, Joyce C, Burns A, Nogal B, Cottrell CA, Ramos A, Biddle T, Pauthner M, Nedellec R, Qureshi H, Mason R, Landais E, Briney B, Ward AB, Burton DR, Sok D.
Cell Reports Sept. 8, 2020

BG505 SOSIP is a well-characterized near-native recombinant HIV Envelope (Env) trimer that holds promise as part of a sequential HIV immunogen regimen to induce broadly neutralizing antibodies (bnAbs). Rhesus macaques are considered the most appropriate pre-clinical animal model for monitoring antibody (Ab) responses. Accordingly, we report here the isolation of 45 BG505 autologous neutralizing antibodies (nAbs) with multiple specificities from SOSIP-immunized and BG505 SHIV-infected rhesus macaques. We associate the most potent neutralization with two epitopes: the C3/V5 and V1/V3 regions. We show that all of the nAbs bind in close proximity to known bnAb epitopes and might therefore sterically hinder elicitation of bnAbs. We also identify a “public clonotype” that targets the immunodominant C3/V5 nAb epitope, which suggests that common antibody rearrangements might help determine humoral responses to Env immunogens. The results highlight important considerations for vaccine design in anticipation of results of the BG505 SOSIP trimer in clinical trials.

Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates


Cottrell CA, van Schooten J, Bowman CA, Yuan M, Oyen D, Shin M, Morpurgo R, van der Woude P, van Breemen M, Torres JL, Patel R, Gross J, Sewall LM, Copps J, Ozorowski G, Nogal B, Sok D, Rakasz EG, Labranche C, Vigdorovich V, Christley S, Carnathan DG, Sather DN, Montefiori D, Silvestri G, Burton DR, Moore JP, Wilson IA, Sanders RW, Ward AB, van Gils MJ
PLoS Pathogens Aug. 31, 2020

The induction of broad and potent immunity by vaccines is the key focus of research efforts aimed at protecting against HIV-1 infection. Soluble native-like HIV-1 envelope glycoproteins have shown promise as vaccine candidates as they can induce potent autologous neutralizing responses in rabbits and non-human primates. In this study, monoclonal antibodies were isolated and characterized from rhesus macaques immunized with the BG505 SOSIP.664 trimer to better understand vaccine-induced antibody responses. Our studies reveal a diverse landscape of antibodies recognizing immunodominant strain-specific epitopes and non-neutralizing neo-epitopes. Additionally, we isolated a subset of mAbs against an epitope cluster at the gp120-gp41 interface that recognize the highly conserved fusion peptide and the glycan at position 88 and have characteristics akin to several human-derived broadly neutralizing antibodies.

Human immunoglobulin repertoire analysis guides design of vaccine priming immunogens targeting HIV V2-apex broadly neutralizing antibody precursors


Willis JR, Berndsen ZT, Ma KM, Steichen JM, Schiffner T, Landais E, Liguori A, Kalyuzhniy O, Allen JD, Baboo S, Omorodion O, Diedrich JK, Hu X, Georgeson E, Phelps N, Eskandarzadeh S, Groschel B, Kubitz M, Adachi Y, Mullin TM, Alavi NB, Falcone S, Himansu S, Carfi A, Wilson IA, Yates JR 3rd, Paulson JC, Crispin M, Ward AB, Schief WR.
Immunity Aug. 31, 2020

Broadly neutralizing antibodies (bnAbs) to the HIV envelope (Env) V2-apex region are important leads for HIV vaccine design. Most V2-apex bnAbs engage Env with an uncommonly long heavy-chain complementarity-determining region 3 (HCDR3), suggesting that the rarity of bnAb precursors poses a challenge for vaccine priming. We created precursor sequence definitions for V2-apex HCDR3-dependent bnAbs and searched for related precursors in human antibody heavy-chain ultradeep sequencing data from 14 HIV-unexposed donors. We found potential precursors in a majority of donors for only two long-HCDR3 V2-apex bnAbs, PCT64 and PG9, identifying these bnAbs as priority vaccine targets. We then engineered ApexGT Env trimers that bound inferred germlines for PCT64 and PG9 and had higher affinities for bnAbs, determined cryo-EM structures of ApexGT trimers complexed with inferred-germline and bnAb forms of PCT64 and PG9, and developed an mRNA-encoded cell-surface ApexGT trimer. These methods and immunogens have promise to assist HIV vaccine development.

Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens


Antanasijevic A, Ueda G, Brouwer PJM, Copps J, Huang D, Allen JD, Cottrell CA, Yasmeen A, Sewall LM, Bontjer I, Ketas TJ, Turner HL, Berndsen ZT, Montefiori DC, Klasse PJ, Crispin M, Nemazee D, Moore JP, Sanders RW, King NP, Baker D, Ward AB.
PLoS Pathogens Aug. 11, 2020

Two-component, self-assembling nanoparticles represent a versatile platform for multivalent presentation of viral antigens. Computational design of protein nanoparticles with differing sizes and geometries enables combination with antigens of choice to test novel multimerization concepts in immunization strategies where the goal is to improve the induction and maturation of neutralizing antibody lineages. Here, we describe detailed antigenic, structural, and functional characterization of computationally designed tetrahedral, octahedral, and icosahedral nanoparticle immunogens displaying trimeric HIV envelope glycoprotein (Env) ectodomains. Env trimers, based on subtype A (BG505) or consensus group M (ConM) sequences and engineered with SOSIP stabilizing mutations, were fused to an underlying trimeric building block of each nanoparticle. Initial screening yielded one icosahedral and two tetrahedral nanoparticle candidates, capable of presenting twenty or four copies of the Env trimer. A number of analyses, including detailed structural characterization by cryo-EM, demonstrated that the nanoparticle immunogens possessed the intended structural and antigenic properties. When the immunogenicity of ConM-SOSIP trimers presented on a two-component tetrahedral nanoparticle or as soluble proteins were compared in rabbits, the two immunogens elicited similar serum antibody binding titers against the trimer component. Neutralizing antibody titers were slightly elevated in the animals given the nanoparticle immunogen and were initially more focused to the trimer apex. Altogether, our findings indicate that tetrahedral nanoparticles can be successfully applied for presentation of HIV Env trimer immunogens; however, the optimal implementation to different immunization strategies remains to be determined.

Targeting HIV Env immunogens to B cell follicles in nonhuman primates through immune complex or protein nanoparticle formulations


Martin JT, Cottrell CA, Antanasijevic A, Carnathan DG, Cossette BJ, Enemuo CA, Gebru EH, Choe Y, Viviano F, Fischinger S, Tokatlian T, Cirelli KM, Ueda G, Copps J, Schiffner T, Menis S, Alter G, Schief WR, Crotty S, King NP, Baker D, Silvestri G, Ward AB, Irvine DJ.
NPJ Vaccines Aug. 5, 2020

Following immunization, high-affinity antibody responses develop within germinal centers (GCs), specialized sites within follicles of the lymph node (LN) where B cells proliferate and undergo somatic hypermutation. Antigen availability within GCs is important, as B cells must acquire and present antigen to follicular helper T cells to drive this process. However, recombinant protein immunogens such as soluble human immunodeficiency virus (HIV) envelope (Env) trimers do not efficiently accumulate in follicles following traditional immunization. Here, we demonstrate two strategies to concentrate HIV Env immunogens in follicles, via the formation of immune complexes (ICs) or by employing self-assembling protein nanoparticles for multivalent display of Env antigens. Using rhesus macaques, we show that within a few days following immunization, free trimers were present in a diffuse pattern in draining LNs, while trimer ICs and Env nanoparticles accumulated in B cell follicles. Whole LN imaging strikingly revealed that ICs and trimer nanoparticles concentrated in as many as 500 follicles in a single LN within two days after immunization. Imaging of LNs collected seven days postimmunization showed that Env nanoparticles persisted on follicular dendritic cells in the light zone of nascent GCs. These findings suggest that the form of antigen administered in vaccination can dramatically impact localization in lymphoid tissues and provides a new rationale for the enhanced immune responses observed following immunization with ICs or nanoparticles.

Anti–influenza H7 human antibody targets antigenic site in hemagglutinin head domain interface


Dong J, Gilchuk I, Li S, Irving R, Goff MT, Turner HL, Ward AB, Carnahan RH, Crowe JE Jr.
Journal of Clinical Investigation Aug. 4, 2020

Although broadly protective, stem-targeted Abs against the influenza A virus hemagglutinin (HA) have been well studied, very limited information is available on Abs that broadly recognize the head domain. We determined the crystal structure of the HA protein of the avian H7N9 influenza virus in complex with a pan-H7, non-neutralizing, protective human Ab. The structure revealed a B cell epitope in the HA head domain trimer interface (TI). This discovery of a second major protective TI epitope supports a model in which uncleaved HA trimers exist on the surface of infected cells in a highly dynamic state that exposes hidden HA head domain features.

-
Title & Authors Journal Publication Date

High-resolution mapping of the neutralizing and binding specificities of polyclonal rabbit serum elicited by HIV Env trimer immunization


Dingens AS, Pratap P, Malone K, Hilton SK, Ketas T, Cottrell CA, Overbaugh J, Moore JP, Klasse PK, Ward AB, Bloom JD

Now Published: 10.7554/eLife.64281
bioRxiv Oct. 21, 2020

Convergence of a common solution to broad ebolavirus neutralization by glycan cap directed human antibodies


Murin CD, Gilchuk P, Ilinykh PA, Huang K, Kuzmina N, Shen X, Bruhn JF, Bryan AL, Davidson E, Doranz BJ, Williamson LE, Copps J, Alkutkar T, Flyak AI, Bukreyev A, Crowe JE, Ward AB

Now Published: 10.1016/j.celrep.2021.108984
bioRxiv Oct. 14, 2020

Cross-reactive serum and memory B cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection


Song G, He WT, Callaghan S, Anzanello F, Huang D, Ricketts J, Torres JL, Beutler N, Peng L, Vargas S, Cassell J, Parren M, Yang L, Ignacio C, Smith DM, Voss JE, Nemazee D, Ward AB, Rogers T, Burton DR, Andrabi R

Now Published: 10.1038/s41467-021-23074-3
bioRxiv Sept. 23, 2020

A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody


Wu NC, Yuan M, Bangaru S, Huang D, Zhu X, Lee CCD, Turner HL, Peng L, Yang L, Nemazee D, Ward AB, Wilson IA

Now Published: 10.1371/journal.ppat.1009089
bioRxiv Sept. 21, 2020

Elicitation of potent serum neutralizing antibody responses in rabbits by immunization with an HIV-1 clade C trimeric Env derived from an Indian elite neutralizer


Kumar R, Deshpande S, Sewall LM, Ozorowski G, Cottrell CA, Lee WH, Holden LG, Richey ST, Singh Chandrawacar A, Dhiman K, Ashish, Kumar V, Ahmed S, Hingankar N, Kumar N, Murugavel KG, Srikrishnan AK, Sok D, Ward AB, Bhattacharya J

Now Published: 10.1371/journal.ppat.1008977
bioRxiv Sept. 15, 2020

Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins


Bouwman KM, Tomris I, Turner HL, van der Woude R, Bosman GP, Rockx B, Herfst S, Haagmans BL, Ward AB, Boons GJ, de Vries RP

Now Published: 10.1371/journal.ppat.1009282
bioRxiv Sept. 4, 2020

Single-component multilayered self-assembling nanoparticles presenting rationally designed glycoprotein trimers as Ebola virus vaccines


He L, Chaudhary A, Lin X, Sou C, Alkutkar T, Kumar S, Ngo T, Kosviner E, Ozorowski G, Stanfield RL, Ward AB, Wilson IA, Zhu J

Now Published: 10.1038/s41467-021-22867-w
bioRxiv Aug. 22, 2020

Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate


Bangaru S, Ozorowski G, Turner HL, Antanasijevic A, Huang D, Wang X, Torres JL, Diedrich JK, Tian JH, Portnoff AD, Patel N, Massare MJ, Yates JR, Nemazee D, Paulson JC, Glenn G, Smith G, Ward AB

Now Published: 10.1126/science.abe1502
bioRxiv Aug. 6, 2020