Publications
-
Title & Authors Journal Publication Date

Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens


Ueda G, Antanasijevic A, Fallas JA, Sheffler W, Copps J, Ellis D, Hutchinson GB, Moyer A, Yasmeen A, Tsybovsky Y, Park YJ, Bick MJ, Sankaran B, Gillespie RA, Brouwer PJ, Zwart PH, Veesler D, Kanekiyo M, Graham BS, Sanders RW, Moore JP, Klasse PJ, Ward AB, King NP, Baker D.
eLife Aug. 4, 2020

Multivalent presentation of viral glycoproteins can substantially increase the elicitation of antigen-specific antibodies. To enable a new generation of anti-viral vaccines, we designed self-assembling protein nanoparticles with geometries tailored to present the ectodomains of influenza, HIV, and RSV viral glycoprotein trimers. We first de novo designed trimers tailored for antigen fusion, featuring N-terminal helices positioned to match the C termini of the viral glycoproteins. Trimers that experimentally adopted their designed configurations were incorporated as components of tetrahedral, octahedral, and icosahedral nanoparticles, which were characterized by cryo-electron microscopy and assessed for their ability to present viral glycoproteins. Electron microscopy and antibody binding experiments demonstrated that the designed nanoparticles presented antigenically intact prefusion HIV-1 Env, influenza hemagglutinin, and RSV F trimers in the predicted geometries. This work demonstrates that antigen-displaying protein nanoparticles can be designed from scratch, and provides a systematic way to investigate the influence of antigen presentation geometry on the immune response to vaccination.

Drivers of recombinant soluble influenza A virus hemagglutinin and neuraminidase expression in mammalian cells


van der Woude R, Turner HL, Tomris I, Bouwman KM, Ward AB, de Vries RP.
Protein Science : A Publication of the Protein Society July 25, 2020

Recombinant soluble trimeric influenza A virus hemagglutinins (HA) and tetrameric neuraminidases (NAs) have proven to be excellent tools to decipher biological properties. Receptor binding and sialic acid cleavage by recombinant proteins correlate satisfactorily compared to whole viruses. Expression of HA and NA can be achieved in a plethora of different laboratory hosts. For immunological and receptor interaction studies however, insect and mammalian cell expressed proteins are preferred due to the presence of N‐linked glycosylation and disulfide bond formation. Because mammalian‐cell expression is widely applied, an increased expression yield is an important goal. Here we report that using codon‐optimized genes and sfGFP fusions, the expression yield of HA can be significantly improved. sfGFP also significantly increased expression yields when fused to the N‐terminus of NA. In this study, a suite of different hemagglutinin and neuraminidase constructs are described, which can be valuable tools to study a wide array of different HAs, NAs and their mutants.

A Vaccine Displaying a Trimeric Influenza-A HA Stem Protein on Capsid-Like Particles Elicits Potent and Long-Lasting Protection in Mice


Thrane S, Aves KL, Uddbäck IEM, Janitzek CM, Han J, Yang YR, Ward AB, Theander TG, Nielsen MA, Salanti A, Thomsen AR, Christensen JP, Sander AF.
Vaccines July 15, 2020

Due to constant antigenic drift and shift, current influenza-A vaccines need to be redesigned and administered annually. A universal flu vaccine (UFV) that provides long-lasting protection against both seasonal and emerging pandemic influenza strains is thus urgently needed. The hemagglutinin (HA) stem antigen is a promising target for such a vaccine as it contains neutralizing epitopes, known to induce cross-protective IgG responses against a wide variety of influenza subtypes. In this study, we describe the development of a UFV candidate consisting of a HAstem trimer displayed on the surface of rigid capsid-like particles (CLP). Compared to soluble unconjugated HAstem trimer, the CLP-HAstem particles induced a more potent, long-lasting immune response and were able to protect mice against both homologous and heterologous H1N1 influenza challenge, even after a single dose.

Adjuvanted H5N1 influenza vaccine enhances both cross-reactive memory B cell and strain-specific naive B cell responses in humans


Ellebedy AH, Nachbagauer R, Jackson KJL, Dai YN, Han J, Alsoussi WB, Davis CW, Stadlbauer D, Rouphael N, Chromikova V, McCausland M, Chang CY, Cortese M, Bower M, Chennareddy C, Schmitz AJ, Zarnitsyna VI, Lai L, Rajabhathor A, Kazemian C, Antia R, Mulligan MJ, Ward AB, Fremont DH, Boyd SD, Pulendran B, Krammer F, Ahmed R.
Proceedings of the National Academy of Sciences July 13, 2020

There is a need for improved influenza vaccines. In this study we compared the antibody responses in humans after vaccination with an AS03-adjuvanted versus nonadjuvanted H5N1 avian influenza virus inactivated vaccine. Healthy young adults received two doses of either formulation 3 wk apart. We found that AS03 significantly enhanced H5 hemagglutinin (HA)-specific plasmablast and antibody responses compared to the nonadjuvanted vaccine. Plasmablast response after the first immunization was exclusively directed to the conserved HA stem region and came from memory B cells. Monoclonal antibodies (mAbs) derived from these plasmablasts had high levels of somatic hypermutation (SHM) and recognized the HA stem region of multiple influenza virus subtypes. Second immunization induced a plasmablast response to the highly variable HA head region. mAbs derived from these plasmablasts exhibited minimal SHM (naive B cell origin) and largely recognized the HA head region of the immunizing H5N1 strain. Interestingly, the antibody response to H5 HA stem region was much lower after the second immunization, and this suppression was most likely due to blocking of these epitopes by stem-specific antibodies induced by the first immunization. Taken together, these findings show that an adjuvanted influenza vaccine can substantially increase antibody responses in humans by effectively recruiting preexisting memory B cells as well as naive B cells into the response. In addition, we show that high levels of preexisting antibody can have a negative effect on boosting. These findings have implications toward the development of a universal influenza vaccine.

Hepatitis C Virus E2 Envelope Glycoprotein Core Structure


Kong L, Giang E, Nieusma T, Kadam RU, Cogburn KE, Hua Y, Dai X, Stanfield RL, Burton DR, Ward AB, Wilson IA, Law M
Science June 16, 2020

Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.

Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability


Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, Okba NMA, Claireaux M, Kerster G, Bentlage AEH, van Haaren MM, Guerra D, Burger JA, Schermer EE, Verheul KD, van der Velde N, van der Kooi A, van Schooten J, van Breemen MJ, Bijl TPL, Sliepen K, Aartse A, Derking R, Bontjer I, Kootstra NA, Wiersinga WJ, Vidarsson G, Haagmans BL, Ward AB, de Bree GJ, Sanders RW, van Gils MJ.
Science June 15, 2020

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a large impact on global health, travel, and economy. Therefore, preventative and therapeutic measures are urgently needed. Here, we isolated monoclonal antibodies from three convalescent coronavirus disease 2019 (COVID-19) patients using a SARS-CoV-2 stabilized prefusion spike protein. These antibodies had low levels of somatic hypermutation and showed a strong enrichment in VH1-69, VH3-30-3, and VH1-24 gene usage. A subset of the antibodies was able to potently inhibit authentic SARS-CoV-2 infection at a concentration as low as 0.007 micrograms per milliliter. Competition and electron microscopy studies illustrate that the SARS-CoV-2 spike protein contains multiple distinct antigenic sites, including several receptor-binding domain (RBD) epitopes as well as non-RBD epitopes. In addition to providing guidance for vaccine design, the antibodies described here are promising candidates for COVID-19 treatment and prevention.

HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies


Steichen JM, Kulp DW, Tokatlian T, Escolano A, Dosenovic P, Stanfield RL, McCoy LE, Ozorowski G, Hu X, Kalyuzhniy O, Briney B, Schiffner T, Garces F, Freund NT, Gitlin AD, Menis S, Georgeson E, Kubitz M, Adachi Y, Jones M, Mutafyan AA, Yun DS, Mayer CT, Ward AB, Burton DR, Wilson IA, Irvine DJ, Nussenzweig MC, Schief WR
Immunity June 5, 2020

Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline-targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.

Vulnerabilities in coronavirus glycan shields despite extensive glycosylation


Watanabe Y, Berndsen ZT, Raghwani J, Seabright GE, Allen JD, Pybus OG, McLellan JS, Wilson IA, Bowden TA, Ward AB, Crispin M.
Nature Communications May 27, 2020

Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (CoVs) are zoonotic pathogens with high fatality rates and pandemic potential. Vaccine development focuses on the principal target of the neutralizing humoral immune response, the spike (S) glycoprotein. Coronavirus S proteins are extensively glycosylated, encoding around 66–87 N-linked glycosylation sites per trimeric spike. Here, we reveal a specific area of high glycan density on MERS S that results in the formation of oligomannose-type glycan clusters, which were absent on SARS and HKU1 CoVs. We provide a comparison of the global glycan density of coronavirus spikes with other viral proteins including HIV-1 envelope, Lassa virus glycoprotein complex, and influenza hemagglutinin, where glycosylation plays a known role in shielding immunogenic epitopes. Overall, our data reveal how organisation of glycosylation across class I viral fusion proteins influence not only individual glycan compositions but also the immunological pressure across the protein surface.

Structural basis of broad HIV neutralization by a vaccine-induced cow antibody


Stanfield RL, Berndsen ZT, Huang R, Sok D, Warner G, Torres JL, Burton DR, Ward AB, Wilson IA, Smider VV.
Science Advances May 27, 2020

Potent broadly neutralizing antibodies (bnAbs) to HIV have been very challenging to elicit by vaccination in wild-type animals. Here, by x-ray crystallography, cryo–electron microscopy, and site-directed mutagenesis, we structurally and functionally elucidate the mode of binding of a potent bnAb (NC-Cow1) elicited in cows by immunization with the HIV envelope (Env) trimer BG505 SOSIP.664. The exceptionally long (60 residues) third complementarity-determining region of the heavy chain (CDR H3) of NC-Cow1 forms a mini domain (knob) on an extended stalk that navigates through the dense glycan shield on Env to target a small footprint on the gp120 CD4 receptor binding site with no contact of the other CDRs to the rest of the Env trimer. These findings illustrate, in molecular detail, how an unusual vaccine-induced cow bnAb to HIV Env can neutralize with high potency and breadth.

Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions


Seabright GE, Cottrell CA, van Gils MJ, D'addabbo A, Harvey DJ, Behrens AJ, Allen JD, Watanabe Y, Scaringi N, Polveroni TM, Maker A, Vasiljevic S, de Val N, Sanders RW, Ward AB, Crispin M.
Structure May 19, 2020

Numerous broadly neutralizing antibodies (bnAbs) have been identified that target the glycans of the HIV-1 envelope spike. Neutralization breadth is notable given that glycan processing can be substantially influenced by the presence or absence of neighboring glycans. Here, using a stabilized recombinant envelope trimer, we investigate the degree to which mutations in the glycan network surrounding an epitope impact the fine glycan processing of antibody targets. Using cryo-electron microscopy and site-specific glycan analysis, we reveal the importance of glycans in the formation of the 2G12 bnAb epitope and show that the epitope is only subtly impacted by variations in the glycan network. In contrast, we show that the PG9 and PG16 glycan-based epitopes at the trimer apex are dependent on the presence of the highly conserved surrounding glycans. Glycan networks underpin the conservation of bnAb epitopes and are an important parameter in immunogen design.

HIV-1 neutralizing antibodies induced by native-like envelope trimers


Sanders RW, van Gils MJ, Derking R, Sok D, Ketas TJ, Burger JA, Ozorowski G, Cupo A, Simonich C, Goo L, Arendt H, Kim HJ, Lee JH, Pugach P, Williams M, Debnath G, Moldt B, van Breemen MJ, Isik G, Medina-Ramirez M, Back JW, Koff WC, Julien JP, Rakasz EG, Seaman MS, Guttman M, Lee KK, Klasse PJ, LaBranche C, Schief WR, Wilson IA, Overbaugh J, Burton DR, Ward AB, Montefiori DC, Dean H, Moore JP
Science April 28, 2020

A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505 SOSIP.664, induced NAbs potently against the sequence-matched tier 2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (tier 1) viruses. Tier 2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas tier 1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous tier 2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for the development of HIV-1 vaccines aimed at inducing bNAbs.

Insights into the trimeric HIV-1 envelope glycoprotein structure


Ward AB, Wilson IA
Trends in Biochemical Sciences April 22, 2020

The HIV-1 envelope glycoprotein (Env) trimer is responsible for receptor recognition and viral fusion with CD4+ T cells, and is the sole target for neutralizing antibodies. Thus, understanding its molecular architecture is of significant interest. However, the Env trimer has proved to be a challenging target for 3D structure determination. Recent electron microscopy (EM) and X-ray structures have at last enabled us to decipher the structural complexity and unique features of the Env trimer, and how it is recognized by an ever-expanding arsenal of potent broadly neutralizing antibodies. We describe our current knowledge of the Env trimer structure in the context of exciting recent developments in the identification and characterization of HIV broadly neutralizing antibodies.

Mapping Polyclonal Antibody Responses in Non-human Primates Vaccinated with HIV Env Trimer Subunit Vaccines


Nogal B, Bianchi M, Cottrell CA, Kirchdoerfer RN, Sewall LM, Turner HL, Zhao F, Sok D, Burton DR, Hangartner L, Ward AB.
Cell Reports March 17, 2020

Rational immunogen design aims to focus antibody responses to vulnerable sites on primary antigens. Given the size of these antigens, there is, however, potential for eliciting unwanted, off-target responses. Here, we use our electron microscopy polyclonal epitope mapping approach to describe the antibody specificities elicited by immunization of non-human primates with soluble HIV envelope trimers and subsequent repeated viral challenge. An increased diversity of epitopes recognized and the approach angle by which these antibodies bind constitute a hallmark of the humoral response in most protected animals. We also show that fusion peptide-specific antibodies are likely responsible for some neutralization breadth. Moreover, cryoelectron microscopy (cryo-EM) analysis of a fully protected animal reveals a high degree of clonality within a subset of putatively neutralizing antibodies, enabling a detailed molecular description of the antibody paratope. Our results provide important insights into the immune response against a vaccine candidate that entered into clinical trials in 2019.

-
Title & Authors Journal Publication Date

Cross-neutralization of a SARS-CoV-2 antibody to a functionally conserved site is mediated by avidity


Liu H, Wu NC, Yuan M, Bangaru S, Torres JL, Caniels TG, van Schooten J, Zhu X, Lee CCD, Brouwer PJ, van Gils MJ, Sanders RW, Ward AB, Wilson IA

Now Published: 10.1016/j.immuni.2020.10.023
bioRxiv Aug. 3, 2020

An alternative binding mode of IGHV3-53 antibodies to the SARS-CoV-2 receptor binding domain


Wu NC, Yuan M, Liu H, Lee CCD, Zhu X, Bangaru S, Torres JL, Caniels TG, Brouwer PJ, van Gils MJ, Sanders RW, Ward AB, Wilson IA

Now Published: 10.1016/j.celrep.2020.108274
bioRxiv July 27, 2020

SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2


Mandel Clausen T, Sandoval DR, Spliid CB, Pihl J, Painter CD, Thacker BE, Glass CA, Narayanan A, Majowicz SA, Zhang Y, Torres JL, Golden GJ, Porell R, Garretson AF, Laubach L, Feldman J, Yin X, Pu Y, Hauser B, Caradonna TM, Kellman BP, Martino C, Gordts PL, Leibel SL, Chanda SK, Schmidt AG, Godula K, Jose J, Corbett KD, Ward AB, Carlin AF, Esko JD

Now Published: 10.1016/j.cell.2020.09.033
bioRxiv July 14, 2020

Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike


Derking R, Allen JD, Cottrell CA, Sliepen K, Seabright GE, Lee WH, Rantalainen K, Antanasijevic A, Copps J, Yasmeen A, van der Woude P, de Taeye SW, van den Kerkhof TL, Klasse PK, Ozorowski G, van Gils MJ, Moore JP, Ward AB, Crispin M, Sanders RW

Now Published: 10.1016/j.celrep.2021.108933
bioRxiv July 2, 2020

Polyclonal epitope cartography reveals the temporal dynamics and diversity of human antibody responses to H5N1 vaccination


Han J, Schmitz AJ, Richey ST, Dai YN, Turner HL, Mohammed BM, Fremont DH, Ellebedy AH, Ward AB

Now Published: 10.1016/j.celrep.2020.108682
bioRxiv June 16, 2020

A strain-specific inhibitor of receptor-bound HIV-1 targets a pocket near the fusion peptide and offers a template for drug design


Ozorowski G, Torres JL, Santos-Martins D, Forli S, Ward AB

Now Published: 10.1016/j.celrep.2020.108428
bioRxiv June 12, 2020

Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability


Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, A Okba NM, Claireaux M, Kerster G, H Bentlage AE, van Haaren MM, Guerra D, Burger JA, Schermer EE, Verheul KD, van der Velde N, van der Kooi A, van Schooten J, van Breemen MJ, L Bijl TP, Sliepen K, Aartse A, Derking R, Bontjer I, Kootstra NA, Joost Wiersinga W, Vidarsson G, Haagmans BL, Ward AB, de Bree GJ, Sanders RW, van Gils MJ

Now Published: 10.1126/science.abc5902
bioRxiv May 12, 2020