Publications
-
Title & Authors Journal Publication Date

HIV-1 Envelope and MPER Antibody Structures in Lipid Assemblies


Rantalainen K, Berndsen ZT, Antanasijevic A, Schiffner T, Zhang X, Lee WH, Torres JL, Zhang L, Irimia A, Copps J, Zhou KH, Kwon YD, Law WH, Schramm CA, Verardi R, Krebs SJ, Kwong PD, Doria-Rose NA, Wilson IA, Zwick MB, Yates JR 3rd, Schief WR, Ward AB.
Cell Reports April 28, 2020

Structural and functional studies of HIV envelope glycoprotein (Env) as a transmembrane protein have long been complicated by challenges associated with inherent flexibility of the molecule and the membrane-embedded hydrophobic regions. Here, we present approaches for incorporating full-length, wild-type HIV-1 Env, as well as C-terminally truncated and stabilized versions, into lipid assemblies, providing a modular platform for Env structural studies by single particle electron microscopy. We reconstitute a full-length Env clone into a nanodisc, complex it with a membrane-proximal external region (MPER) targeting antibody 10E8, and structurally define the full quaternary epitope of 10E8 consisting of lipid, MPER, and ectodomain contacts. By aligning this and other Env-MPER antibody complex reconstructions with the lipid bilayer, we observe evidence of Env tilting as part of the neutralization mechanism for MPER-targeting antibodies. We also adapt the platform toward vaccine design purposes by introducing stabilizing mutations that allow purification of unliganded Env with a peptidisc scaffold.

Innovations in structure-based antigen design and immune monitoring for next generation vaccines


Ward AB, Wilson IA.
Current Opinion in Immunology April 22, 2020

The recent explosion of atomic-level structures of glycoproteins that comprise the surface antigens of human enveloped viruses, such as RSV, influenza, and HIV, provide tremendous opportunities for rational, structure-based vaccine design. Several concepts in structure-based vaccine design have been put into practice and are are well along preclinical and clinical implementation. Testing of these designed immunogens will provide key insights into the ability to induce the desired immune responses, namely neutralizing antibodies. Many of these immunogens in human clinical trials represent only the first wave of designs and will likely require continued tweaking and elaboration to achieve the ultimate goal of enhanced breadth and potency. Considerable effort is now being invested in germline targeting, epitope focusing, and improved immune presentation such as multivalent nanoparticle incorporation. This review highlights some of the recent advances in these areas as we prepare for the next generation of immunogens for subsequent rounds of iterative vaccine development.

Mapping Polyclonal Antibody Responses in Non-human Primates Vaccinated with HIV Env Trimer Subunit Vaccines


Nogal B, Bianchi M, Cottrell CA, Kirchdoerfer RN, Sewall LM, Turner HL, Zhao F, Sok D, Burton DR, Hangartner L, Ward AB.
Cell Reports March 17, 2020

Rational immunogen design aims to focus antibody responses to vulnerable sites on primary antigens. Given the size of these antigens, there is, however, potential for eliciting unwanted, off-target responses. Here, we use our electron microscopy polyclonal epitope mapping approach to describe the antibody specificities elicited by immunization of non-human primates with soluble HIV envelope trimers and subsequent repeated viral challenge. An increased diversity of epitopes recognized and the approach angle by which these antibodies bind constitute a hallmark of the humoral response in most protected animals. We also show that fusion peptide-specific antibodies are likely responsible for some neutralization breadth. Moreover, cryoelectron microscopy (cryo-EM) analysis of a fully protected animal reveals a high degree of clonality within a subset of putatively neutralizing antibodies, enabling a detailed molecular description of the antibody paratope. Our results provide important insights into the immune response against a vaccine candidate that entered into clinical trials in 2019.

Structure and mechanism of monoclonal antibody binding to the junctional epitope of Plasmodium falciparum circumsporozoite protein


Oyen D, Torres JL, Aoto PC, Flores-Garcia Y, Binter S, Pholcharee T, Carroll S, Reponen S, Wash R, Liang Q, Lemiale F, Locke E, Bradley A, King CR, Emerling D, Kellam P, Zavala F, Ward AB, Wilson IA.
PLoS Pathogens March 9, 2020

Lasting protection has long been a goal for malaria vaccines. The major surface antigen on Plasmodium falciparum sporozoites, the circumsporozoite protein (PfCSP), has been an attractive target for vaccine development and most protective antibodies studied to date interact with the central NANP repeat region of PfCSP. However, it remains unclear what structural and functional characteristics correlate with better protection by one antibody over another. Binding to the junctional region between the N-terminal domain and central NANP repeats has been proposed to result in superior protection: this region initiates with the only NPDP sequence followed immediately by NANP. Here, we isolated antibodies in Kymab mice immunized with full-length recombinant PfCSP and two protective antibodies were selected for further study with reactivity against the junctional region. X-ray and EM structures of two monoclonal antibodies, mAb667 and mAb668, shed light on their differential affinity and specificity for the junctional region. Importantly, these antibodies also bind to the NANP repeat region with equal or better affinity. A comparison with an NANP-only binding antibody (mAb317) revealed roughly similar but statistically distinct levels of protection against sporozoite challenge in mouse liver burden models, suggesting that junctional antibody protection might relate to the ability to also cross-react with the NANP repeat region. Our findings indicate that additional efforts are necessary to isolate a true junctional antibody with no or much reduced affinity to the NANP region to elucidate the role of the junctional epitope in protection.

Engineered immunogen binding to alum adjuvant enhances humoral immunity


Moyer TJ, Kato Y, Abraham W, Chang JYH, Kulp DW, Watson N, Turner HL, Menis S, Abbott RK, Bhiman JN, Melo MB, Simon HA, Herrera-De la Mata S, Liang S, Seumois G, Agarwal Y, Li N, Burton DR, Ward AB, Schief WR, Crotty S, Irvine DJ
Nature Medicine Feb. 17, 2020

Adjuvants are central to the efficacy of subunit vaccines. Aluminum hydroxide (alum) is the most commonly used vaccine adjuvant, yet its adjuvanticity is often weak and mechanisms of triggering antibody responses remain poorly understood. We demonstrate that site-specific modification of immunogens with short peptides composed of repeating phosphoserine (pSer) residues enhances binding to alum and prolongs immunogen bioavailability. The pSer-modified immunogens formulated in alum elicited greatly increased germinal center, antibody, neutralizing antibody, memory and long-lived plasma cell responses compared to conventional alum-adsorbed immunogens. Mechanistically, pSer-immunogen:alum complexes form nanoparticles that traffic to lymph nodes and trigger B cell activation through multivalent and oriented antigen display. Direct uptake of antigen-decorated alum particles by B cells upregulated antigen processing and presentation pathways, further enhancing B cell activation. These data provide insights into mechanisms of action of alum and introduce a readily translatable approach to significantly improve humoral immunity to subunit vaccines using a clinical adjuvant.

Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization


Gilchuk P, Murin CD, Milligan JC, Cross RW, Mire CE, Ilinykh PA, Huang K, Kuzmina N, Altman PX, Hui S, Gunn BM, Bryan AL, Davidson E, Doranz BJ, Turner HL, Alkutkar T, Flinko R, Orlandi C, Carnahan R, Nargi R, Bombardi RG, Vodzak ME, Li S, Okoli A, Ibeawuchi M, Ohiaeri B, Lewis GK, Alter G, Bukreyev A, Saphire EO, Geisbert TW, Ward AB, Crowe JE Jr.
Immunity Feb. 3, 2020

Structural principles underlying the composition of protective antiviral monoclonal antibody (mAb) cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic mAb cocktail against Ebola virus. We systematically analyzed the antibody repertoire in human survivors and identified a pair of potently neutralizing mAbs that cooperatively bound to the ebolavirus glycoprotein (GP). High-resolution structures revealed that in a two-antibody cocktail, molecular mimicry was a major feature of mAb-GP interactions. Broadly neutralizing mAb rEBOV-520 targeted a conserved epitope on the GP base region. mAb rEBOV-548 bound to a glycan cap epitope, possessed neutralizing and Fc-mediated effector function activities, and potentiated neutralization by rEBOV-520. Remodeling of the glycan cap structures by the cocktail enabled enhanced GP binding and virus neutralization. The cocktail demonstrated resistance to virus escape and protected non-human primates (NHPs) against Ebola virus disease. These data illuminate structural principles of antibody cooperativity with implications for development of antiviral immunotherapeutics.

Autologous Antibody Responses to an HIV Envelope Glycan Hole Are Not Easily Broadened in Rabbits


Yang YR, McCoy LE, van Gils MJ, Andrabi R, Turner HL, Yuan M, Cottrell CA, Ozorowski G, Voss J, Pauthner M, Polveroni TM, Messmer T, Wilson IA, Sanders RW, Burton DR, Ward AB
Journal of Virology Jan. 15, 2020

Extensive studies with subtype A BG505-derived HIV envelope glycoprotein (Env) immunogens have revealed that the dominant autologous neutralizing epitope in rabbits is located in an exposed region of the heavily glycosylated trimer that lacks potential N-linked glycosylation sites at positions 230, 241, and 289. The Env derived from B41, a subtype B virus, shares a glycan hole centered on positions 230 and 289. To test whether broader neutralization to the common glycan hole can be achieved, we immunized rabbits with B41 SOSIP (gp120-gp41 disulfide [SOS] with an isoleucine-to-proline mutation [IP] in gp41) alone, as well as B41 and BG505 coimmunization. We isolated autologous neutralizing antibodies (nAbs) and described their structure in complex with the B41 Env. Our data suggest that distinct autologous nAb lineages are induced by BG505 and B41 immunogens, even when both were administered together. In contrast to previously described BG505 glycan hole antibodies, the B41-specific nAbs accommodate the >97% conserved N241 glycan, which is present in B41. Single-particle cryo-electron microscopy studies confirmed that B41- and BG505-specific nAbs bind to overlapping glycan hole epitopes. We then used our high-resolution data to guide mutations in the BG505 glycan hole epitope in an attempt to broaden the reactivity of a B41-specific nAb, but we recovered only partial binding. Our data demonstrate that the lack of cross-reactivity in glycan hole antibodies is due to amino acid differences within the epitope, and our attempts to rationally design cross-reactive trimers resulted in only limited success. Thus, even for the immunodominant glycan hole shared between BG505 and B41, the prospect of designing prime-boost immunogens remains difficult. IMPORTANCE A glycan hole is one of the most dominant autologous neutralizing epitopes targeted on BG505 and B41 SOSIP trimer-immunized rabbits. Our high-resolution cryo-electron microscopy (cryoEM) studies of B41 in complex with a B41-specific antibody complex elucidate the molecular basis of this strain-specific glycan hole response. We conclude that even for the immunodominant glycan hole shared between BG505 and B41, the prospect of designing prime-boost immunogens remains difficult.

Diverse Antibody Responses to Conserved Structural Motifs in Plasmodium falciparum Circumsporozoite Protein


Pholcharee T, Oyen D, Torres JL, Flores-Garcia Y, Martin GM, González-Páez GE, Emerling D, Volkmuth W, Locke E, King CR, Zavala F, Ward AB, Wilson IA.
Journal of Molecular Biology Dec. 27, 2019

Malaria vaccine candidate RTS,S/AS01 is based on the central and C-terminal regions of the circumsporozoite protein (CSP) of P. falciparum. mAb397 was isolated from a volunteer in an RTS,S/AS01 clinical trial, and it protects mice from infection by malaria sporozoites. However, mAb397 originates from the less commonly used VH3-15 germline gene compared to the VH3-30/33 antibodies generally elicited by RTS,S to the central NANP repeat region of CSP. The crystal structure of mAb397 with an NPNA4 peptide shows that the central NPNA forms a type I β-turn and is the main recognition motif. In most anti-NANP antibodies studied to date, a germline-encoded Trp is used to engage the Pro in NPNA β-turns, but here the Trp interacts with the first Asn. This “conserved” Trp, however, can arise from different germline genes and be located in the heavy or the light chain. Variation in the terminal ψ angles of the NPNA β-turns results in different dispositions of the subsequent NPNA and, hence, different stoichiometries and modes of antibody binding to rsCSP. Diverse protective antibodies against NANP repeats are therefore not limited to a single germline gene response or mode of binding.

Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin


Ringe RP, Cruz Portillo VM, Dosenovic P, Ketas TJ, Ozorowski G, Nogal B, Perez L, LaBranche CC, Lim J, Francomano E, Wilson IA, Sanders RW, Ward AB, Montefiori DC, Nussenzweig MC, Klasse PJ, Cupo A, Moore JP.
Journal of Virology Dec. 18, 2019

We covalently attached human immunodeficiency virus type 1 (HIV-1) Env SOSIP trimers to iron oxide nanoparticles (IO-NPs) to create a particulate immunogen for neutralizing antibody (NAb) induction. The attached trimers, ∼20 per particle, retained native-like antigenicity, judged by reactivity with NAbs and non-NAbs. Bivalent (BG505 and B41) trimer IO-NPs were made, as were IO-NPs displaying B41 trimers carrying a PADRE T-cell helper epitope (TCHE). We immunized mice with B41 soluble or IO-NP trimers after PADRE peptide priming. After two immunizations, IO-NP presentation and the TCHE tag independently and substantially increased anti-trimer antibody responses, but titer differences waned after two further doses. Notable and unexpected findings were that autologous NAbs to the N289 glycan hole epitope were consistently induced in mice given soluble but not IO-NP trimers. Various recombinant mannose binding lectins (MBLs) and MBLs in sera of both murine and human origin bound to soluble and IO-NP trimers. MBL binding occluded the autologous NAb epitope on the B41 IO-NP trimers, which may contribute to its poor immunogenicity. The exposure of a subset of broadly active NAb epitopes was also impaired by MBL binding, which could have substantial implications for the utility of trimer-bearing nanoparticles in general and perhaps also for soluble Env proteins. IMPORTANCE Recombinant trimeric SOSIP proteins are vaccine components intended to induce neutralizing antibodies (NAbs) that prevent cells from infection by human immunodeficiency virus type 1 (HIV-1). A way to increase the strength of antibody responses to these proteins is to present them on the surface of nanoparticles (NPs). We chemically attached about 20 SOSIP trimers to NPs made of iron oxide (IO). The resulting IO-NP trimers had appropriate properties when we studied them in the laboratory but, unexpectedly, were less able to induce NAbs than nonattached trimers when used to immunize mice. We found that mannose binding lectins, proteins naturally present in the serum of mice and other animals, bound strongly to the soluble and IO-NP trimers, blocking access to antibody epitopes in a way that may impede the development of NAb responses. These findings should influence how trimer-bearing NPs of various designs are made and used.

An MPER antibody neutralizes HIV-1 using germline features shared among donors


Zhang L, Irimia A, He L, Landais E, Rantalainen K, Leaman DP, Vollbrecht T, Stano A, Sands DI, Kim AS; IAVI Protocol G Investigators, Poignard P, Burton DR, Murrell B, Ward AB, Zhu J, Wilson IA, Zwick MB.
Nature Communications Nov. 26, 2019

The membrane-proximal external region (MPER) of HIV-1 envelope glycoprotein (Env) can be targeted by neutralizing antibodies of exceptional breadth. MPER antibodies usually have long, hydrophobic CDRH3s, lack activity as inferred germline precursors, are often from the minor IgG3 subclass, and some are polyreactive, such as 4E10. Here we describe an MPER broadly neutralizing antibody from the major IgG1 subclass, PGZL1, which shares germline V/D-region genes with 4E10, has a shorter CDRH3, and is less polyreactive. A recombinant sublineage variant pan-neutralizes a 130-isolate panel at 1.4 μg/ml (IC50). Notably, a germline revertant with mature CDR3s neutralizes 12% of viruses and still binds MPER after DJ reversion. Crystal structures of lipid-bound PGZL1 variants and cryo-EM reconstruction of an Env-PGZL1 complex reveal how these antibodies recognize MPER and viral membrane. Discovery of common genetic and structural elements among MPER antibodies from different patients suggests that such antibodies could be elicited using carefully designed immunogens.

Structural Basis of Protection against H7N9 Influenza Virus by Human Anti-N9 Neuraminidase Antibodies


Zhu X, Turner HL, Lang S, McBride R, Bangaru S, Gilchuk IM, Yu W, Paulson JC, Crowe JE Jr, Ward AB, Wilson IA.
Cell Host & Microbe Nov. 25, 2019

Influenza virus neuraminidase (NA) is a major target for small-molecule antiviral drugs. Antibodies targeting the NA surface antigen could also inhibit virus entry and egress to provide host protection. However, our understanding of the nature and range of target epitopes is limited because of a lack of human antibody structures with influenza neuraminidase. Here, we describe crystal and cryogenic electron microscopy (cryo-EM) structures of NAs from human-infecting avian H7N9 viruses in complex with five human anti-N9 antibodies, systematically defining several antigenic sites and antibody epitope footprints. These antibodies either fully or partially block the NA active site or bind to epitopes distant from the active site while still showing neuraminidase inhibition. The inhibition of antibodies to NAs was further analyzed by glycan array and solution-based NA activity assays. Together, these structural studies provide insights into protection by anti-NA antibodies and templates for the development of NA-based influenza virus vaccines and therapeutics.

Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice


Gilchuk IM, Bangaru S, Gilchuk P, Irving RP, Kose N, Bombardi RG, Thornburg NJ, Creech CB, Edwards KM, Li S, Turner HL, Yu W, Zhu X, Wilson IA, Ward AB, Crowe JE Jr.
Cell Host & Microbe Nov. 19, 2019

H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined. We isolated 35 human monoclonal antibodies (mAbs) from two H7N9 survivors and two vaccinees. These mAbs react to NA in a subtype-specific manner and recognize diverse antigenic sites on the surface of N9 NA, including epitopes overlapping with, or distinct from, the enzyme active site. Despite recognizing multiple antigenic sites, the mAbs use a common mechanism of action by blocking egress of nascent virions from infected cells, thereby providing an antiviral prophylactic and therapeutic protection in vivo in mice. Studies of breadth, potency, and diversity of antigenic recognition from four subjects suggest that vaccination with inactivated adjuvanted vaccine induce NA-reactive responses comparable to that of H7N9 natural infection.

-
Title & Authors Journal Publication Date

Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability


Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, A Okba NM, Claireaux M, Kerster G, H Bentlage AE, van Haaren MM, Guerra D, Burger JA, Schermer EE, Verheul KD, van der Velde N, van der Kooi A, van Schooten J, van Breemen MJ, L Bijl TP, Sliepen K, Aartse A, Derking R, Bontjer I, Kootstra NA, Joost Wiersinga W, Vidarsson G, Haagmans BL, Ward AB, de Bree GJ, Sanders RW, van Gils MJ

Now Published: 10.1126/science.abc5902
bioRxiv May 12, 2020

Networks of HIV-1 envelope glycans maintain antibody epitopes in the face of glycan additions and deletions


Seabright GE, Cottrell CA, van Gils MJ, D’addabbo A, Harvey DJ, Behrens AJ, Allen JD, Watanabe Y, Maker A, Vasiljevic S, de Val N, Sanders RW, Ward AB, Crispin M

Now Published: 10.1016/j.str.2020.04.022
bioRxiv Feb. 23, 2020

Vulnerabilities in coronavirus glycan shields despite extensive glycosylation


Watanabe Y, Berndsen ZT, Raghwani J, Seabright GE, Allen JD, McLellan JS, Wilson IA, Bowden TA, Ward AB, Crispin M

Now Published: 10.1038/s41467-020-16567-0
bioRxiv Feb. 21, 2020

Targeting HIV Env immunogens to B cell follicles in non-human primates through immune complex or protein nanoparticle formulations


Martin JT, Cottrell CA, Antanasijevic A, Carnathan DG, Cossette BJ, Enemuo CA, Gebru EH, Choe Y, Viviano F, Tokatlian T, Cirelli KM, Ueda G, Copps J, Schiffner T, Menis S, Schief WR, Crotty S, King NP, Baker D, Silvestri G, Ward AB, Irvine DJ

Now Published: 10.1038/s41541-020-00223-1
bioRxiv Feb. 20, 2020

Structure and immune recognition of the porcine epidemic diarrhea virus spike protein


Kirchdoerfer RN, Bhandari M, Martini O, Sewall LM, Bangaru S, Yoon KJ, Ward AB

Now Published: 10.1016/j.str.2020.12.003
bioRxiv Feb. 19, 2020

Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates


Cottrell CA, van Schooten J, Bowman CA, Yuan M, Oyen D, Shin M, Morpurgo R, van der Woude P, van Breemen M, Torres JL, Patel R, Gross J, Sewall LM, Copps J, Ozorowski G, Nogal B, Sok D, Rakasz EG, Labranche C, Vigdorovich V, Christley S, Carnathan DG, Sather DN, Montefiori D, Silvestri G, Burton DR, Moore JP, Wilson IA, Sanders RW, Ward AB, van Gils MJ

Now Published: 10.1371/journal.ppat.1008753
bioRxiv Feb. 7, 2020

Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens


Antanasijevic A, Ueda G, JM Brouwer P, Copps J, Huang D, Allen JD, Cottrell CA, Yasmeen A, Sewall LM, Bontjer I, Ketas TJ, Turner HL, Berndsen ZT, Klasse PJ, Crispin M, Nemazee D, Moore JP, Sanders RW, King NP, Baker D, Ward AB

Now Published: 10.1371/journal.ppat.1008665
bioRxiv Feb. 2, 2020

Tailored Design of Protein Nanoparticle Scaffolds for Multivalent Presentation of Viral Glycoprotein Antigens


Ueda G, Antanasijevic A, Fallas JA, Sheffler W, Copps J, Ellis D, Hutchinson G, Moyer A, Yasmeen A, Tsybovsky Y, Park YJ, Bick MJ, Sankaran B, Gillespie RA, M. Brouwer PJ, Zwart PH, Veesler D, Kanekiyo M, Graham BS, Sanders R, Moore JP, Klasse PJ, Ward AB, King N, Baker D

Now Published: 10.7554/eLife.57659
bioRxiv Jan. 30, 2020