Pre-Prints
-
Title & Authors Journal Publication Date
-
Title & Authors Journal Publication Date

Vaccination with mRNA-encoded membrane-bound HIV Envelope trimer induces neutralizing antibodies in animal models


Ramezani-Rad P, Cottrell CA, Marina-Zárate E, Liguori A, Landais E, Torres JL, Myers A, Lee JH, Baboo S, Flynn C, McKenney K, Salcedo E, Zhou X, Kalyuzhniy O, Georgeson E, Phelps N, Lu D, Eskandarzadeh S, Menis S, Kubitz M, Groschel B, Alavi N, Jackson AM, Lee WH, Tran AS, Ben-Akiva E, Michaels KK, Diedrich JK, Enemuo CA, Lewis V, Pradhan A, Kasturi SP, Schiffner T, Steichen JM, Carnathan DG, Himansu S, Yates JR, Paulson JC, Ozorowski G, Irvine DJ, Silvestri G, Sok D, Ward AB, Crotty S, Schief WR.
bioRxiv Jan. 24, 2025

A protective vaccine against HIV will likely need to induce broadly neutralizing antibodies (bnAbs) that engage relatively conserved epitopes on the HIV envelope glycoprotein (Env) trimer. Nearly all vaccine strategies to induce bnAbs require the use of relatively complex immunization regimens involving a series of different immunogens, most of which are Env trimers. Producing protein-based clinical material to evaluate such relatively complex regimens in humans presents major challenges in cost and time. Furthermore, immunization with HIV trimers as soluble proteins induces strong non-neutralizing responses to the trimer base, which is normally occluded on the virion. These base responses could potentially detract from the induction of nAbs and the eventual induction of bnAbs. mRNA vaccine platforms offer potential advantages over protein delivery for HIV vaccine development, including increased production speed, reduced cost, and the ability to deliver membrane-bound trimers that might facilitate improved immuno-focusing to non-base epitopes. We report the design of mRNA-delivered soluble and membrane-bound forms of a stabilized native-like Env trimer (BG505 MD39.3), initial immunogenicity evaluation in rabbits that triggered clinical evaluation, and more comprehensive evaluation of B cell, T cell, and antibody responses in non-human primates. mRNA-encoded membrane-bound Env immunization elicited reduced off-target base-directed Env responses and stronger neutralizing antibody responses, compared with mRNA-encoded soluble Env. Overall, mRNA delivery of membrane-bound Env appears promising for enhancing B cell responses to subdominant epitopes and facilitating rapid translation to clinical testing, which should assist HIV vaccine development. HIV envelope trimer mRNA enables membrane-bound expression and represents a functional immunogen in pre-clinical mammalian models

Structural serology of polyclonal antibody responses to mRNA-1273 and NVX-CoV2373 COVID-19 vaccines


Bangaru S, Jackson AM, Copps J, Fernández-Quintero ML, Torres JL, Richey ST, Nogal B, Sewall LM, Peña AT de la, Rehman A, Guebre-Xabier M, Girard B, Das R, Corbett-Helaire KS, Seder RA, Graham BS, Edwards DK, Patel N, Smith G, Ward AB.
bioRxiv Dec. 11, 2024

Current COVID-19 vaccines are largely limited in their ability to induce broad, durable immunity against emerging viral variants. Design and development of improved vaccines utilizing existing platforms requires an in-depth understanding of the antigenic and immunogenic properties of available vaccines. Here we examined the antigenicity of two of the original COVID-19 vaccines, mRNA-1273 and NVX-CoV2373, by electron microscopy-based polyclonal epitope mapping (EMPEM) of serum from immunized non-human primates (NHPs) and clinical trial donors. Both vaccines induce diverse polyclonal antibody (pAb) responses to the N-terminal domain (NTD) in addition to the receptor-binding domain (RBD) of the Spike protein, with the NTD supersite being an immunodominant epitope. High-resolution cryo-EMPEM studies revealed extensive pAb responses to and around the supersite with unique angles of approach and engagement. NTD supersite pAbs were also the most susceptible to variant mutations compared to other specificities, indicating that ongoing Spike ectodomain-based vaccine design strategies should consider immuno-masking this site to prevent induction of these strain-specific responses.

Structural and Functional Insights into the Evolution of SARS-CoV-2 KP.3.1.1 Spike Protein


Feng Z, Huang J, Baboo S, Diedrich JK, Bangaru S, Paulson JC, Yates JR, Yuan M, Wilson IA, Ward AB
bioRxiv Dec. 10, 2024

The JN.1-sublineage KP.3.1.1 recently emerged as the globally prevalent SARS-CoV-2 variant, demonstrating increased infectivity and antibody escape. We investigated how mutations and a deletion in the KP.3.1.1 spike protein (S) affect ACE2 binding and antibody escape. Mass spectrometry revealed a new glycan site at residue N30 and altered glycoforms at neighboring N61. Cryo-EM structures showed that the N30 glycan and rearrangement of adjacent residues did not significantly change the overall spike structure, up-down ratio of the receptor-binding domains (RBDs), or ACE2 binding. Furthermore, a KP.3.1.1 S structure with hACE2 further confirmed an epistatic effect between F456L and Q493E on ACE2 binding. Our analysis shows SARS-CoV-2 variants that emerged after late 2023 are now incorporating reversions to residues found in other sarbecoviruses, including the N30 glycan, Q493E, and others. Overall, these results inform on the structural and functional consequences of the KP.3.1.1 mutations, the current SARS-CoV-2 evolutionary trajectory, and immune evasion

Functional and epitope specific monoclonal antibody discovery directly from immune sera using cryoEM


Ferguson JA, Raghavan SSR, Alzua GP, Bhavsar D, Huang J, Rodriguez AJ, Torres JL, Bottermann M, Han J, Krammer F, Batista FD, Ward AB.
bioRxiv Dec. 6, 2024

Antibodies are crucial therapeutics, comprising a significant portion of approved drugs due to their safety and clinical efficacy. Traditional antibody discovery methods are labor-intensive, limiting scalability and high-throughput analysis. Here, we improved upon our streamlined approach combining structural analysis and bioinformatics to infer heavy and light chain sequences from electron potential maps of serum-derived polyclonal antibodies (pAbs) bound to antigens. Using ModelAngelo, an automated structure-building tool, we accelerated pAb sequence determination and identified sequence matches in B cell repertoires via ModelAngelo derived Hidden Markov Models (HMMs) associated with pAb structures. Benchmarking against results from a non-human primate HIV vaccine trial, our pipeline reduced analysis time from weeks to under a day with higher precision. Validation with murine immune sera from influenza vaccination revealed multiple protective antibodies. This workflow enhances antibody discovery, enabling faster, more accurate mapping of polyclonal responses with broad applications in vaccine development and therapeutic antibody discovery.

De novo designed pMHC binders facilitate T cell induced killing of cancer cells


Johansen KH, Wolff DS, Scapolo B, Quintero MLF, Christensen CR, Loeffler JR, Rivera-de-Torre E, Overath MD, Munk KK, Morell O, Viuff MC, Englund ATD, Due M, Forli S, Andersen EQ, Fernandes JS, Thumtecho S, Ward AB, Ormhøj M, Hadrup SR, Jenkins TP
bioRxiv Nov. 27, 2024

The recognition of intracellular antigens by CD8+ T cells through T-cell receptors (TCRs) is central to adaptive immunity, enabling responses against infections and cancer. The recent approval of TCR-gene-edited T cells for cancer therapy demonstrates the therapeutic advantage of using pMHC recognition to eliminate cancer. However, identification and selection of TCRs from patient material is complex and influenced by the TCR repertoire of the donors used. To overcome these limitations, we here present a rapid and robust de novo binder design platform leveraging state-of-the-art generative models, including RFdiffusion, ProteinMPNN, and AlphaFold2, to engineer minibinders (miBds) targeting the cancer-associated pMHC complex, NY-ESO-1(157-165)/HLA-A*02:01. By incorporating in silico cross-panning and molecular dynamics simulations, we enhanced specificity screening to minimise off-target interactions. We identified a miBd that exhibited high specificity for the NY-ESO-1-derived peptide SLLMWITQC in complex with HLA-A*02:01 and minimal cross-reactivity in mammalian display assays. We further demonstrate the therapeutic potential of this miBd by integrating it into a chimeric antigen receptor, as de novo Binders for Immune-mediated Killing Engagers (BIKEs). BIKE-transduced T cells selectively and effectively killed NY-ESO-1+ melanoma cells compared to non-transduced controls, demonstrating the promise of this approach in precision cancer immunotherapy. Our findings underscore the transformative potential of generative protein design for accelerating the discovery of high-specificity pMHC-targeting therapeutics. Beyond CAR-T applications, our workflow establishes a foundation for developing miBds as versatile tools, heralding a new era of precision immunotherapy.

Immunofocusing on the conserved fusion peptide of HIV envelope glycoprotein in rhesus macaques


Pratap PP, Cottrell CA, Quinn J, Carnathan DG, Bader DLV, Tran AS, Enemuo CA, Ngo JT, Richey ST, Gao H, Shen X, Greene KM, Hurtado J, Michaels KK, Ben-Akiva E, Allen JD, Ozorowski G, Crispin M, Briney B, Montefiori D, Silvestri G, Irvine DJ, Crotty S, Ward AB.
bioRxiv Nov. 27, 2024

During infection, the fusion peptide (FP) of HIV envelope glycoprotein (Env) serves a central role in viral fusion with the host cell. As such, the FP is highly conserved and therefore an attractive epitope for vaccine design. Here, we describe a vaccination study in non-human primates (NHPs) where glycan deletions were made on soluble HIV Env to increase FP epitope exposure. When delivered via implantable osmotic pumps, this immunogen primed immune responses against the FP, which were then boosted with heterologous trimers resulting in a focused immune response targeting the conserved FP epitope. Although autologous immunizations did not elicit high affinity FP-targeting antibodies, the conserved FP epitope on a heterologous trimer further matured the lower affinity, FP-targeting B cells. This study suggests using epitope conservation strategies on distinct Env trimer immunogens can focus humoral responses on desired neutralizing epitopes and suppress immune-distracting antibody responses against non-neutralizing epitopes

Structural basis of broad protection against influenza virus by a human antibody targeting the neuraminidase active site via a recurring motif in CDR H3


Jo G, Yamayoshi S, Ma KM, Swanson O, Torres JL, Ferguson JA, Fernández-Quintero ML, Huang J, Copps J, Rodriguez AJ, Steichen JM, Kawaoka Y, Han J, Ward AB
bioRxiv Nov. 26, 2024

Influenza viruses evolve rapidly, driving seasonal epidemics and posing global pandemic threats. While neuraminidase (NA) has emerged as a vaccine target, shared molecular features of NA antibody responses are still not well understood. Here, we describe cryo-electron microscopy structures of the broadly protective human antibody DA03E17, which was previously identified from an H1N1-infected donor, in complex with NA from A/H1N1, A/H3N2, and B/Victoria-lineage viruses. DA03E17 targets the highly conserved NA active site using its long CDR H3, which features a DR (Asp–Arg) motif that engages catalytic residues and mimics sialic acid interactions. We further demonstrate that this motif is conserved among several NA active site-targeting antibodies, indicating a common receptor mimicry strategy. We also identified potential antibody precursors containing this DR motif in all donors of a healthy human donor BCR database, highlighting the prevalence of this motif and its potential as vaccine targeting. Our findings reveal shared molecular features in NA active site-targeting antibodies, offering insights for NA-based universal influenza vaccine design.

Structural and immunological characterization of the H3 influenza hemagglutinin during antigenic drift


Rocha R de PF, Tomris I, Bowman CA, Stevens E, Kantorow J, Peng W, Oeverdieck S, Ferguson JA, Jung DD, Herfst S, Snijder J, Chakraborty S, Peña AT de la, Berndsen ZT, Vries RP de, Ward AB.
bioRxiv Sept. 13, 2024

The quest for a universal influenza vaccine holds great promise for mitigating the global burden of influenza-related morbidity and mortality. However, challenges persist in identifying conserved epitopes capable of inducing protection. In this study, we explore the influence of glycan evolution on H3 hemagglutinin from 1968 to present day and its impacts on antigenicity and immunogenicity. We observe that the appearance of potential N-linked glycosylation sites in Sing/16 hemagglutinin head domain reduces the binding of broadly neutralizing antibodies and shifts the polyclonal immune response upon vaccination to target the stem. Furthermore, structural characterization of HK/68 and Sing/16 by cryo-electron microscopy shows that while HK/68 is resistant to enzymatic deglycosylation, removal of glycans destabilizes the hyperglycosylated head and membrane-proximal region in Sing/16. These insights expand our understanding of glycans beyond their role in protein folding and highlight the interplay among glycan integration and immune recognition to design a universal influenza vaccine

Vaccines combining slow delivery and follicle targeting of antigens increase germinal center B cell clonal diversity and clonal expansion.


Rodrigues KA, Zhang YJ, Aung A, Morgan DM, Maiorino L, Yousefpour P, Gibson G, Ozorowski G, Gregory JR, Amlashi P, Buckley M, Ward AB, Schief WR, Love JC, Irvine DJ.
bioRxiv Aug. 19, 2024

Vaccines incorporating slow delivery, multivalent antigen display, or immunomodulation through adjuvants have an important role to play in shaping the humoral immune response. Here we analyzed mechanisms of action of a clinically relevant combination adjuvant strategy, where phosphoserine (pSer)-tagged immunogens bound to aluminum hydroxide (alum) adjuvant (promoting prolonged antigen delivery to draining lymph nodes) are combined with a potent saponin nanoparticle adjuvant termed SMNP (which alters lymph flow and antigen entry into lymph nodes). When employed with a stabilized HIV Env trimer antigen in mice, this combined adjuvant approach promoted substantial enhancements in germinal center (GC) and antibody responses relative to either adjuvant alone. Using scRNA-seq and scBCR-seq, we found that the alum-pSer/SMNP combination both increased the diversity of GC B cell clones and increased GC B cell clonal expansion, coincident with increases in the expression of Myc and the proportion of S-phase GC B cells. To gain insight into the source of these changes in the GC response, we analyzed antigen biodistribution and structural integrity in draining lymph nodes and found that the combination adjuvant approach, but not alum-pSer delivery or SMNP alone, promoted accumulation of highly intact antigen on follicular dendritic cells, reflecting an integration of the slow antigen delivery and altered lymph node uptake effects of these two adjuvants. These results demonstrate how adjuvants with complementary mechanisms of action impacting vaccine biodistribution and kinetics can synergize to enhance humoral immunity.

Structural Mapping of Polyclonal IgG Responses to HA After Influenza Virus Vaccination or Infection.


León AN, Rodriguez AJ, Richey ST, Peña AT de la, Wolters RM, Jackson AM, Webb K, Creech CB, Yoder S, Mudd PA, Crowe JE, Han J, Ward AB.
bioRxiv July 8, 2024

Cellular and molecular characterization of immune responses elicited by influenza virus infection and seasonal vaccination have informed efforts to improve vaccine efficacy, breadth, and longevity. Here, we use negative stain electron microscopy polyclonal epitope mapping (nsEMPEM) to structurally characterize the humoral IgG antibody responses to hemagglutinin (HA) from human patients vaccinated with a seasonal quadrivalent flu vaccine or infected with influenza A viruses. Our data show that both vaccinated and infected patients had humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs, including the stem and anchor, which are targets for universal influenza vaccine design. Responses against H1 predominantly targeted the central stem epitope in infected patients and vaccinated donors, whereas head epitopes were more prominently targeted on H3. Responses against H3 were less abundant, but a greater diversity of H3 epitopes were targeted relative to H1. While our analysis is limited by sample size, on average, vaccinated donors responded to a greater diversity of epitopes on both H1 and H3 than infected patients. These data establish a baseline for assessing polyclonal antibody responses in vaccination and infection, providing context for future vaccine trials and emphasizing the importance of carefully designing vaccines to boost protective responses towards conserved epitopes.

A single mutation in dairy cow-associated H5N1 viruses increases receptor binding breadth


Good MR, Ji W, Fernández-Quintero ML, Ward AB, Guthmiller JJ
bioRxiv June 22, 2024

Clade 2.3.4.4b H5N1 is causing an unprecedented outbreak in dairy cows in the United States. To understand if recent H5N1 viruses are changing their receptor use, we screened recombinant hemagglutinin (HA) from historical and recent 2.3.4.4b H5N1 viruses for binding to distinct glycans bearing terminal sialic acids. We found that H5 from A/Texas/37/2024, an isolate from the dairy cow outbreak, has increased binding breadth to glycans bearing terminal α2,3 sialic acids, the avian receptor, compared to historical and recent 2.3.4.4b H5N1 viruses. We did not observe any binding to α2,6 sialic acids, the receptor used by human seasonal influenza viruses. We identified a single mutation outside of the receptor binding site, T199I, was responsible for increased binding breadth, as it increased receptor binding site flexibility. Together, these data show recent H5N1 viruses are evolving increased receptor binding breadth which could impact the host range and cell types infected with H5N1

Broadening sarbecovirus neutralization with bispecific antibodies combining distinct conserved targets on the receptor binding domain


Guerra D, Radić L, Brinkkemper M, Poniman M, Maas L van der, Torres JL, Ward AB, Sliepen K, Schinkel J, Sanders RW, Gils MJ van, Beaumont T.
bioRxiv May 9, 2024

Monoclonal neutralizing antibodies (mAbs) are considered an important prophylactic against SARS-CoV-2 infection in at-risk populations and a strategy to counteract future sarbecovirus-induced disease. However, most mAbs isolated so far neutralize only a few sarbecovirus strains. Therefore, there is a growing interest in bispecific antibodies (bsAbs) which can simultaneously target different spike epitopes and thereby increase neutralizing breadth and prevent viral escape. Here, we generate and characterize a panel of 30 novel broadly reactive bsAbs using an efficient controlled Fab-arm exchange protocol. We specifically combine some of the broadest mAbs described so far, which target conserved epitopes on the receptor binding domain (RBD). Several bsAbs show superior cross-binding and neutralization compared to the parental mAbs against sarbecoviruses from diverse clades, including recent SARS-CoV-2 variants. BsAbs which include mAb COVA2-02 are among the most potent and broad combinations. As a result, we study the unknown epitope of COVA2-02 and show that this mAb targets a distinct conserved region at the base of the RBD, which could be of interest when designing next-generation bsAb constructs to contribute to a better pandemic preparedness.

HIV BG505 SOSIP.664 trimer with 3M-052-AF/alum induces human autologous tier-2 neutralizing antibodies.


Hahn WO, Parks KR, Shen M, Ozorowski G, Janes H, Ballweber-Fleming L, Woodward Davis AS, Duplessis C, Tomai M, Dey AK, Sagawa ZK, De Rosa SC, Seese A, Siddaramaiah LK, Stamatatos L, Lee WH, Sewall LM, Karlinsey D, Turner HL, Rubin V, Furth S, MacPhee K, Duff M, Corey L, Keefer MC, Edupuganti S, Frank I, Maenza J, Baden LR, Hyrien O, Sanders RW, Moore JP, Ward AB, Tomaras GD, Montefiori DC, Rouphael N, McElrath MJ.
medRxiv May 8, 2024

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140, formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding and immunogenicity in a first-in-healthy adult (n=17), randomized, placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, B-cell and CD4+ T-cell responses emerged post-vaccination. Five vaccinees developed serum autologous tier-2 nAbs (ID50 titer, 1:28-1:8647) after 2-3 doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B-cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. Key takeaway/take-home messages: HIV BG505 SOSIP.664 trimer with novel 3M-052-AF/alum adjuvant in humans appears safe and induces serum neutralizing antibodies to matched clade A, tier 2 virus, that map to diverse Env epitopes with relatively high titers. The novel adjuvant may be an important mediator of vaccine response.

Repeat modules and N-linked glycans define structure and antigenicity of a critical enterotoxigenic E. coli adhesin.


Berndsen ZT, Akhtar M, Thapa M, Vickers T, Schmitz A, Torres JL, Baboo S, Kumar P, Khatoom N, Sheikh A, Hamrick M, Diedrich JK, Martinez-Bartolome S, Garrett PT, Yates JR 3rd, Turner JS, Laird RM, Poly F, Porter CK, Copps J, Ellebedy AH, Ward AB, Fleckenstein JM.
bioRxiv May 8, 2024

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as human volunteers challenged with ETEC, diarrheal severity is significantly increased severity in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of human volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected human volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.

Assessing AF2’s ability to predict structural ensembles of proteins


Riccabona JR, Spoendlin FC, Fischer ALM, Loeffler JR, Quoika PK, Jenkins TP, Ferguson JA, Smorodina E, Laustsen AH, Greiff V, Forli S, Ward AB, Deane CM, Fernández-Quintero ML
bioRxiv April 16, 2024

Recent breakthroughs in protein structure prediction have enhanced the precision and speed at which protein configurations can be determined, setting new benchmarks for accuracy and efficiency in the field. However, the fundamental mechanisms of biological processes at a molecular level are often connected to conformational changes of proteins. Molecular dynamics (MD) simulations serve as a crucial tool for capturing the conformational space of proteins, providing valuable insights into their structural fluctuations. However, the scope of MD simulations is often limited by the accessible timescales and the computational resources available, posing challenges to comprehensively exploring protein behaviors. Recently emerging approaches have focused on expanding the capability of AlphaFold2 (AF2) to predict conformational substates of protein structures by manipulating the input multiple sequence alignment (MSA). These approaches operate under the assumption that the MSA also contains information about the heterogeneity of protein structures. Here, we benchmark the performance of various workflows that have adapted AF2 for ensemble prediction focusing on the subsampling of the MSA as implemented in ColabFold and compare the obtained structures with ensembles obtained from MD simulations and NMR. As test cases, we chose four proteins namely the bovine pancreatic inhibitor protein (BPTI), thrombin and two antigen binding fragments (antibody Fv and nanobody), for which reliable experimentally validated structural information (X-ray and/or NMR) was available. Thus, we provide an overview of the levels of performance and accessible timescales that can currently be achieved with machine learning (ML) based ensemble generation. In three out of the four test cases, we find structural variations fall within the predicted ensembles. Nevertheless, significant minima of the free energy surfaces remain undetected. This study highlights the possibilities and pitfalls when generating ensembles with AF2 and thus may guide the development of future tools while informing upon the results of currently available applications.

HIV envelope trimers and gp120 as immunogens to induce broadly neutralizing antibodies in cows.


Altman PX, Parren M, Sang H, Ozorowski G, Lee WH, Smider VV, Wilson IA, Ward AB, Mwangi W, Burton DR, Sok D.
bioRxiv March 20, 2024

The study of immunogens capable of eliciting broadly neutralizing antibodies (bnAbs) is crucial for the development of an HIV vaccine. To date, only cows, making use of their ultralong CDRH3 loops, have reliably elicited bnAbs following immunization with HIV Envelope trimers. Antibody responses to the CD4 binding site have been readily elicited by immunization of cows with a stabilized Env trimer of the BG505 strain and, with more difficulty, to the V2-apex region of Env with a cocktail of trimers. Here, we sought to determine whether the BG505 Env trimer could be engineered to generate new bnAb specificities in cows. Since the cow CD4 binding site bnAbs bind to monomeric BG505 gp120, we also sought to determine whether gp120 immunization alone might be sufficient to induce bnAbs. We found that engineering the CD4 binding site by mutation of a key binding residue of BG505 HIV Env resulted in a reduced bnAb response that took more immunizations to develop. Monoclonal antibodies isolated from one animal were directed to the V2-apex, suggesting a re-focusing of the bnAb response. Immunization with monomeric BG505 g120 generated no serum bnAb responses, indicating that the ultralong CDRH3 bnAbs are only elicited in the context of the trimer in the absence of many other less restrictive epitopes presented on monomeric gp120. The results support the notion of a hierarchy of epitopes on HIV Env and suggest that, even with the presence in the cow repertoire of ultralong CDRH3s, bnAb epitopes are relatively disfavored.

Anti-Immune Complex Antibodies are Elicited During Repeated Immunization with HIV Env Immunogens


Brown S, Antanasijevic A, Sewall LM, Montiel Garcia D, Brouwer PJM, Sanders RW, Ward AB
bioRxiv March 15, 2024

Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Early antibody responses to easily accessible epitopes on these antigens are directed to non-neutralizing epitopes instead of bnAb epitopes. Autologous neutralizing antibody responses appear upon boosting once immunodominant epitopes are saturated. Here we report another type of antibody response that arises after repeated immunizations with HIV Env immunogens and present the structures of six anti-immune complexes discovered using polyclonal epitope mapping. The anti-immune complex antibodies target idiotopes composed of framework regions of antibodies bound to Env. This work sheds light on current vaccine development efforts for HIV, as well as for other pathogens, in which repeated exposure to antigen is required.

Immunization of cows with HIV envelope trimers generates broadly neutralizing antibodies to the V2-apex from the ultralong CDRH3 repertoire


Altman PX, Ozorowski G, Stanfield RL, Haakenson J, Appel M, Parren M, Lee WH, Sang H, Woehl J, Saye-Francisco K, Joyce C, Song G, Porter K, Landais E, Andrabi R, Wilson IA, Ward AB, Mwangi W, Smider VV, Burton DR, Sok D
bioRxiv Feb. 13, 2024

The generation of broadly neutralizing antibodies (bnAbs) to specific HIV epitopes of the HIV Envelope (Env) is one of the cornerstones of HIV vaccine research. The current animal models we use have been unable to reliable produce a broadly neutralizing antibody response, with the exception of cows. Cows have rapidly and reliably produced a CD4 binding site response by homologous prime and boosting with a native-like Env trimer. In small animal models other engineered immunogens previously have been able to focus antibody responses to the bnAb V2-apex region of Env. Here, we immunized two groups of cows (n=4) with two regiments of V2-apex focusing immunogens to investigate whether antibody responses could be directed to the V2-apex on Env. Group 1 were immunized with chimpanzee simian immunodeficiency virus (SIV)-Env trimer that shares its V2-apex with HIV, followed by immunization with C108, a V2-apex focusing immunogen, and finally boosted with a cross-clade native-like trimer cocktail. Group 2 were immunized with HIV C108 Env trimer followed by the same HIV trimer cocktail as Group 1. Longitudinal serum analysis showed that one cow in each group developed serum neutralizing antibody responses to the V2-apex. Eight and 11 bnAbs were isolated from Group 1 and Group 2 cows respectively. The best bnAbs had both medium breadth and potency. Potent and broad responses developed later than previous CD4bs cow bnAbs and required several different immunogens. All isolated bnAbs were derived from the ultralong CDRH3 repertoire. The finding that cow antibodies can target multiple broadly neutralizing epitopes on the HIV surface reveals important insight into the generation of immunogens and testing in the cow animal model. The exclusive isolation of ultralong CDRH3 bnAbs, despite only comprising a small percent of the cow repertoire, suggests these antibodies outcompete the long and short CDRH3 antibodies during the bnAb response. The elicitation of epitope-specific broadly neutralizing antibodies is highly desirable for an HIV vaccine as bnAbs can prevent HIV infection in robust animal challenge models and humans, but to date, cows are the only model shown to reliably produce HIV bnAb responses on Envelope (Env) immunization. These responses involve Abs with ultralong CDRH3s and are all directed to a single site, the CD4 binding site. To determine whether this is a unique phenomenon or whether cow antibodies can target further bnAb sites on Env, we employed an immunization protocol that generated cow bnAbs to a second site, the V2-apex. We conclude that ultralong CDRH3s are well adapted to penetrate the glycan shield of HIV Env and recognize conserved regions and may constitute protein units, either in the context of antibodies or in other engineered proteins, that could be deployed as anti-HIV reagents.

Broadly inhibitory antibodies against severe malaria virulence proteins


Reyes RA, Sundar Rajan Raghavan S, Hurlburt NK, Introini V, Hussain Kana I, Jensen RW, Martinez-Scholze E, Gestal-Mato M, Bancells Bau C, Lisa Fernández-Quintero M, Loeffler JR, Alexander Ferguson J, Lee WH, Michael Martin G, Theander TG, Ssewanyana I, Feeney ME, Greenhouse B, Bol S, Ward AB, Bernabeu M, Pancera M, Turner L, Bunnik EM, Lavstsen T
bioRxiv Jan. 25, 2024

Plasmodium falciparum pathology is driven by the accumulation of parasite-infected erythrocytes in microvessels. This process is mediated by the parasite’s polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. A subset of PfEMP1 variants that bind human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here, we describe two broadly reactive and binding-inhibitory human monoclonal antibodies against CIDRα1. The antibodies isolated from two different individuals exhibited a similar and consistent EPCR-binding inhibition of 34 CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins as well as parasite sequestration in bioengineered 3D brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with two different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies likely represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.

Defining bottlenecks and opportunities for Lassa virus neutralization by structural profiling of vaccine-induced polyclonal antibody responses


Brouwer PJ, Perrett HR, Beaumont T, Nijhuis H, Kruijer S, Burger JA, Lee WH, Müller-Kraüter H, Sanders RW, Strecker T, van Gils MJ, Ward AB
bioRxiv Dec. 21, 2023

Lassa fever continues to be a major public health burden in endemic countries in West Africa, yet effective therapies or vaccines are lacking. The isolation of potent and protective neutralizing antibodies against the Lassa virus glycoprotein complex (GPC) justifies the development of vaccines that can elicit strong neutralizing antibody responses. However, Lassa vaccines candidates have generally been unsuccessful in doing so and the associated antibody responses to these vaccines remain poorly characterized. Here, we establish an electron-microscopy based epitope mapping pipeline that enables high-resolution structural characterization of polyclonal antibodies to GPC. By applying this method to rabbits vaccinated with a recombinant GPC vaccine and a GPC-derived virus-like particle, we reveal determinants of neutralization which involve epitopes of the GPC-C, GPC-A, and GP1-A competition clusters. Furthermore, by identifying previously undescribed immunogenic off-target epitopes, we expose challenges that recombinant GPC vaccines face. By enabling detailed polyclonal antibody characterization, our work ushers in a next generation of more rational Lassa vaccine design.