Title & Authors | Journal | Publication Date |
---|---|---|
Germline-targeting SOSIP trimer immunization elicits precursor CD4 binding-site targeting broadly neutralizing antibodies in infant macaques |
bioRxiv | Nov. 7, 2023 |
A vaccine that can achieve protective immunity prior to sexual debut is critical to prevent the estimated 410,000 new HIV infections that occur yearly in adolescents. As children living with HIV can make broadly neutralizing antibody (bnAb) responses in plasma at a faster rate than adults, early childhood is an opportune window for implementation of a multi-dose HIV immunization strategy to elicit protective immunity prior to adolescence. Therefore, the goal of our study was to assess the ability of a B cell lineage-designed HIV envelope SOSIP to induce bnAbs in early life. Infant rhesus macaques (RMs) received either BG505 SOSIP or the germline-targeting BG505 GT1.1 SOSIP (n=5/group) with the 3M-052-SE adjuvant at 0, 6, and 12 weeks of age. All infant RMs were then boosted with the BG505 SOSIP at weeks 26, 52 and 78, mimicking a pediatric immunization schedule of multiple vaccine boosts within the first two years of life. Both immunization strategies induced durable, high magnitude binding antibodies and plasma autologous virus neutralization that primarily targeted the CD4-binding site (CD4bs) or C3/465 epitope. Notably, three BG505 GT1.1-immunized infants exhibited a plasma HIV neutralization signature reflective of VRC01-like CD4bs bnAb precursor development and heterologous virus neutralization. Finally, infant RMs developed precursor bnAb responses at a similar frequency to that of adult RMs receiving a similar immunization strategy. Thus, a multi-dose immunization regimen with bnAb lineage designed SOSIPs is a promising strategy for inducing protective HIV bnAb responses in childhood prior to adolescence when sexual HIV exposure risk begins. |
||
Viral envelope proteins fused to multiple distinct fluorescent reporters to probe receptor binding Now Published: 10.1002/pro.4974 |
bioRxiv | Oct. 23, 2023 |
Enveloped viruses carry one or multiple proteins with receptor binding functionalities. Functional receptors can either be glycans, proteinaceous or both, recombinant protein approaches are instrumental to gain more insight into these binding properties. Visualizing and measuring receptor binding normally entails antibody detection or direct labelling, whereas direct fluorescent fusions are attractive tools in molecular biology. Here we report a suite of different fluorescent fusions, both N- and/or C-terminal, for influenza A virus hemagglutinins and SARS-CoV-2 spike RBD. The proteins contained a total of three or six fluorescent protein barrels and were applied directly to cells to determine receptor binding properties. |
||
Local structural flexibility drives oligomorphism in computationally designed protein assemblies |
bioRxiv | Oct. 18, 2023 |
Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. For example, clathrin coats adopt a wide variety of architectures to adapt to vesicular cargos of various sizes. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, most existing methods focus on designing static structures with high accuracy. Here we characterize the structures of three distinct computationally designed protein assemblies that each form multiple unanticipated architectures, and identify flexibility in specific regions of the subunits of each assembly as the source of structural diversity. Cryo-EM single-particle reconstructions and native mass spectrometry showed that only two distinct architectures were observed in two of the three cases, while we obtained six cryo-EM reconstructions that likely represent a subset of the architectures present in solution in the third case. Structural modeling and molecular dynamics simulations indicated that the surprising observation of a defined range of architectures, instead of non-specific aggregation, can be explained by constrained flexibility within the building blocks. Our results suggest that deliberate use of structural flexibility as a design principle will allow exploration of previously inaccessible structural and functional space in designed protein assemblies. |
||
Structure-guided mutagenesis of OSCAs reveals differential activation to mechanical stimuli Now Published: 10.7554/elife.93147 |
bioRxiv | Oct. 3, 2023 |
The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension1. Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell- attached patches (i.e., they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). In an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization2. Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family. |
||
Germline-targeting chimpanzee SIV Envelopes induce V2-apex broadly neutralizing-like B cell precursors in a rhesus macaque infection model |
bioRxiv | Sept. 21, 2023 |
Eliciting broadly neutralizing antibodies-(bnAbs) remains a major goal of HIV-1 vaccine research. Previously, we showed that a soluble chimpanzee SIV Envelope-(Env) trimer, MT145K, bound several human V2-apex bnAb-precursors and stimulated an appropriate response in V2-apex bnAb precursor-expressing knock-in mice. Here, we tested the immunogenicity of three MT145 variants (MT145, MT145K, MT145K.dV5) expressed as chimeric simian-chimpanzee-immunodeficiency-viruses-(SCIVs) in rhesus macaques-(RMs). All three viruses established productive infections with high setpoint vRNA titers. RMs infected with the germline-targeting SCIV_MT145K and SCIV_MT145K.dV5 exhibited larger and more clonally expanded B cell lineages featuring long anionic heavy chain complementary-determining-regions-(HCDR3s) compared with wildtype SCIV_MT145. Moreover, antigen-specific B cell analysis revealed enrichment for long-CDHR3-bearing antibodies in SCIV_MT145K.dV5 infected animals with paratope features resembling prototypic V2-apex bnAbs and their precursors. Although none of the animals developed bnAbs, these results show that germline-targeting SCIVs can activate and preferentially expand B cells expressing V2-apex bnAb-like precursors, the first step in bnAb elicitation. |
||
Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines Now Published: 10.1038/s41541-024-00862-8 |
bioRxiv | Aug. 27, 2023 |
Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies. |
||
Immune memory shapes human polyclonal antibody responses to H2N2 vaccination Now Published: 10.1016/j.celrep.2024.114171 |
bioRxiv | Aug. 23, 2023 |
Influenza A virus subtype H2N2, which caused the 1957 influenza pandemic, remains a global threat. A recent phase I clinical trial investigating a ferritin nanoparticle displaying H2 hemagglutinin in H2-naïve and H2-exposed adults. Therefore, we could perform comprehensive structural and biochemical characterization of immune memory on the breadth and diversity of the polyclonal serum antibody response elicited after H2 vaccination. We temporally map the epitopes targeted by serum antibodies after first and second vaccinations and show previous H2 exposure results in higher responses to the variable head domain of hemagglutinin while initial responses in H2-naïve participants are dominated by antibodies targeting conserved epitopes. We use cryo-EM and monoclonal B cell isolation to describe the molecular details of cross-reactive antibodies targeting conserved epitopes on the hemagglutinin head including the receptor binding site and a new site of vulnerability deemed the medial junction. Our findings accentuate the impact of pre-existing influenza exposure on serum antibody responses. Serum Abs after first H2-F vaccination in H2-exposed donors bound variable HA head epitopes Serum Abs after first H2-F vaccination in H2-naïve donors bound conserved HA head and stem epitopes RBS-targeting VH1-69 cross-reactive antibodies were induced in H2-naïve individuals The medial junction is a previously uncharacterized conserved epitope on the HA head |
||
Glycan heterogeneity as a cause of the persistent fraction in HIV-1 neutralization Now Published: 10.1371/journal.ppat.1011601 |
bioRxiv | Aug. 8, 2023 |
Abstract Neutralizing antibodies (NAbs) to multiple epitopes on the HIV-1 envelope glycoprotein (Env) have been isolated from infected persons. The potency of NAbs is more often measured than the size of the persistent fraction o f infectivity at maximum neutralization, which may also influence preventive efficacy by active or passive immunization and the therapeutic outcome of the latter. HIV-1 CZA97.012, a clone of a Clade C isolate, is neutralized to ∼100% by many NAbs. But here NAb PGT151, directed to a fusion-peptide epitope, was shown to leave a persistent fraction of 15%. NAb PGT145, ligating the Env-trimer apex, was less potent but more effective. We sought explanations of the different persistent fractions by depleting pseudoviral populations of the most PGT151- and PGT145-reactive virions. Thereby, neutralization by the non-depleting NAb increased; it decreased by the depleting NAb. Furthermore, depletion by PGT151 increased sensitivity to autologous neutralization by sera from rabbits immunized with soluble native-like CZA97.012 trimer: substantial persistent fractions were reduced. NAbs in these sera target epitopes comprising residue D411 at the V4-β19 transition in a defect of the glycan shield on CZA97.012 Env. Affinity-fractionated soluble native-like CZA97.012 trimer showed commensurate antigenic differences in analyses by ELISA and surface plasmon resonance. We then demonstrated glycan differences between PGT151- and PGT145-purified trimer fractions by mass spectrometry, providing one explanation for the differential antigenicity. These differences were interpreted in relation to a new structure at 3.4-Å resolution of the soluble CZA97.012 trimer determined by cryo-electron microscopy. PGT151-purified trimer showed a closed conformation, refuting apex opening as the cause of reduced PGT145 binding. The evidence suggests that differences in binding and neutralization after trimer purification or PV depletion with PGT145 or PGT151 are caused by variation in glycosylation, and that some glycan variants confer antigenic heterogeneity through direct effects on antibody contacts, whereas others act allosterically. Author Summary Neutralizing antibodies block the entry of HIV-1 into cells and protect against HIV-1 infection in animal models. Therefore, a goal of vaccination is to elicit antibodies that potently neutralize most HIV-1 variants. Such antibodies suppress virus levels when given to HIV-1-infected patients. Their potency is often measured as the concentration that gives 50% or 80% neutralization. But higher degrees of neutralization are needed to protect an organism from infection. And for some antibodies a ceiling is reached, so that even with increased concentrations a constant fraction of infectious virus persists. We studied the carbohydrate moieties on the envelope glycoprotein, which is the sole target for neutralizing antibodies, of one HIV-1 isolate of the most widespread subtype, Clade C, prevalent in Africa and Asia. We show how differences in carbohydrates can contribute to persistent infectivity, because distinct carbohydrates fit different antibodies. With a new three-dimensional structure of the entry-mediating protein from the Clade-C isolate, we illustrate that some carbohydrate differences occur exactly where the antibodies bind, whereas others are located elsewhere and can act indirectly. When we combined two neutralizing antibodies the persistent infectivity shrank. Our results reinforce the need for multiple specificities of neutralizing antibodies in prevention and therapy. |
||
Focusing antibody responses to the fusion peptide in rhesus macaques |
bioRxiv | June 26, 2023 |
Immunodominance of antibodies targeting non-neutralizing epitopes and the high level of somatic hypermutation within germinal centers (GCs) required for most HIV broadly neutralizing antibodies (bnAbs) are major impediments to the development of an effective HIV vaccine. Rational protein vaccine design and non-conventional immunization strategies are potential avenues to overcome these hurdles. Here, we report using implantable osmotic pumps to continuously deliver a series of epitope-targeted immunogens to rhesus macaques over the course of six months to elicit immune responses against the conserved fusion peptide. Antibody specificities and GC responses were tracked longitudinally using electron microscopy polyclonal epitope mapping (EMPEM) and lymph node fine-needle aspirates, respectively. Application of cryoEMPEM delineated key residues for on-target and off-target responses that can drive the next round of structure-based vaccine design. |
||
Structure of mechanically activated ion channel OSCA2.3 reveals mobile elements in the transmembrane domain Now Published: 10.1016/j.str.2023.11.009 |
bioRxiv | June 15, 2023 |
Members of the OSCA/TMEM63 are mechanically activated ion channels and structures of some OSCA members have revealed the architecture of these channels and structural features that are potentially involved in mechanosensation. However, these structures are all in a similar state and information about the motion of different elements of the structure is limited, preventing a deeper understanding of how these channels work. Here, we used cryo-electron microscopy to determine high resolution structures of Arabidopsis thaliana OSCA1.2 and OSCA2.3 in peptidiscs. The structure of OSCA1.2 resembles previous structures of the same protein in different environments. Yet, in OSCA2.3 the TM6a-TM7 linker constricts the pore on its cytoplasmic side, revealing conformational heterogeneity within the OSCA family. Furthermore, coevolutionary sequence analysis uncovered a conserved interaction between TM6a-TM7 linker and the Beam-Like Domain. Our results support the involvement of TM6a-TM7 in mechanosensation and potentially in the diverse response of OSCA channels to mechanical stimuli. |
||
Evolving spike-protein N -glycosylation in SARS-CoV-2 variants |
bioRxiv | May 8, 2023 |
Abstract It has been three years since SARS-CoV-2 emerged and the world plunged into a “once in a century” pandemic. Since then, multiple waves of infection have swept through the human population, led by variants that were able to evade any acquired immunity. The co-evolution of SARS-CoV-2 variants with human immunity provides an excellent opportunity to study the interaction between viral pathogens and their human hosts. The heavily N -glycosylated spike-protein of SARS-CoV-2 plays a pivotal role in initiating infection and is the target for host immune response, both of which are impacted by host-installed N -glycans. We compared the N -glycan landscape of recombinantly expressed, stabilized, soluble spike-protein trimers representing seven of the most prominent SARS-CoV-2 variants and found that N -glycan processing is conserved at most sites. However, in multiple variants, processing of N -glycans from high mannose-to complex-type is reduced at sites N165, N343 and N616, implicated in spike-protein function. |
||
Ab initio prediction of specific phospholipid complexes and membrane association of HIV-1 MPER antibodies by multi-scale simulations |
bioRxiv | May 4, 2023 |
A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using integrative modeling. All-atom simulations of 4E10, PGZL1, 10E8 and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling platform developed here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design. |
||
Broadly neutralizing antibodies targeting a conserved silent face of spike RBD resist extreme SARS-CoV-2 antigenic drift |
bioRxiv | April 26, 2023 |
Developing broad coronavirus vaccines requires identifying and understanding the molecular basis of broadly neutralizing antibody (bnAb) spike sites. In our previous work, we identified sarbecovirus spike RBD group 1 and 2 bnAbs. We have now shown that many of these bnAbs can still neutralize highly mutated SARS-CoV-2 variants, including the XBB.1.5. Structural studies revealed that group 1 bnAbs use recurrent germline encoded CDRH3 features to interact with a conserved RBD region that overlaps with class 4 bnAb site. Group 2 bnAbs recognize a less well-characterized "site V" on the RBD and destabilize spike trimer. The site V has remained largely unchanged in SARS-CoV- 2 variants and is highly conserved across diverse sarbecoviruses, making it a promising target for broad coronavirus vaccine development. Our findings suggest that targeted vaccine strategies may be needed to induce effective B cell responses to escape resistant subdominant spike RBD bnAb sites. |
||
Deep repertoire mining uncovers ultra-broad coronavirus neutralizing antibodies targeting multiple spike epitopes Now Published: 10.1016/j.celrep.2024.114307 |
bioRxiv | March 28, 2023 |
Development of vaccines and therapeutics that are broadly effective against known and emergent coronaviruses is an urgent priority. Current strategies for developing pan-coronavirus countermeasures have largely focused on the receptor binding domain (RBD) and S2 regions of the coronavirus Spike protein; it has been unclear whether the N-terminal domain (NTD) is a viable target for universal vaccines and broadly neutralizing antibodies (Abs). Additionally, many RBD-targeting Abs have proven susceptible to viral escape. We screened the circulating B cell repertoires of COVID-19 survivors and vaccinees using multiplexed panels of uniquely barcoded antigens in a high-throughput single cell workflow to isolate over 9,000 SARS-CoV-2-specific monoclonal Abs (mAbs), providing an expansive view of the SARS-CoV-2-specific Ab repertoire. We observed many instances of clonal coalescence between individuals, suggesting that Ab responses frequently converge independently on similar genetic solutions. Among the recovered antibodies was TXG-0078, a public neutralizing mAb that binds the NTD supersite region of the coronavirus Spike protein and recognizes a diverse collection of alpha- and beta-coronaviruses. TXG-0078 achieves its exceptional binding breadth while utilizing the same VH1-24 variable gene signature and heavy chain-dominant binding pattern seen in other NTD supersite-specific neutralizing Abs with much narrower specificity. We also report the discovery of CC24.2, a pan-sarbecovirus neutralizing mAb that targets a novel RBD epitope and shows similar neutralization potency against all tested SARS-CoV-2 variants, including BQ.1.1 and XBB.1.5. A cocktail of TXG-0078 and CC24.2 provides protection against in vivo challenge with SARS-CoV-2, suggesting potential future use in variant-resistant therapeutic Ab cocktails and as templates for pan-coronavirus vaccine design. |
||
Conformational antigenic heterogeneity as a cause of the persistent fraction in HIV-1 neutralization |
Research Square | Feb. 21, 2023 |
Neutralizing antibodies (NAbs) protect against HIV-1 acquisition in animal models and show promise in treatment of infection. They act by binding to the viral envelope glycoprotein (Env), thereby blocking its receptor interactions and fusogenic function. The potency of neutralization is largely determined by affinity. Less well explained is the persistent fraction, the plateau of remaining infectivity at the highest antibody concentrations.</p> <p><strong>Results</strong></p> <p>We observed different persistent fractions for NAb neutralization of pseudovirus derived from two Tier-2 isolates of HIV-1, BG505 (Clade A) and B41 (Clade B): it was pronounced for B41 but not BG505 neutralization by NAb PGT151, directed to the interface between the outer and transmembrane subunits of Env, but negligible for either virus by NAb PGT145 to an apical epitope. Autologous neutralization by poly- and monoclonal NAbs from rabbits immunized with soluble native-like B41 trimer also left substantial persistent fractions. These NAbs largely target a cluster of epitopes in a hole in the dense glycan shield of Env around residue 289. We partially depleted B41-virion populations by incubating them with PGT145- or PGT151-conjugated beads. Each depletion reduced the sensitivity to the depleting NAb and enhanced it to the other. Autologous neutralization by the rabbit NAbs was reduced for PGT145-depleted and enhanced for PGT151-depleted B41 pseudovirus. Those changes in sensitivity encompassed both potency and the persistent fraction. We then compared soluble native-like BG505 and B41 Env trimers affinity-purified by one of three NAbs: 2G12, PGT145, or PGT151. Surface plasmon resonance showed differences among the fractions in antigenicity, including kinetics and stoichiometry, congruently with the differential neutralization. The large persistent fraction after PGT151 neutralization of B41 was attributable to low stoichiometry, which we explained structurally by the conformational plasticity of B41 Env.</p> <p><strong>Conclusion</strong></p> <p>Distinct antigenic forms even of clonal HIV-1 Env, detectable among soluble native-like trimer molecules, are distributed over virions and may profoundly mold neutralization of certain isolates by certain NAbs. Affinity purifications with some antibodies may yield immunogens that preferentially expose epitopes for broadly active NAbs, while shielding less cross-reactive ones. NAbs reactive with multiple conformers will together reduce the persistent fraction after passive and active immunization.</p> |
||
Bispecific antibodies combine breadth, potency, and avidity of parental antibodies to neutralize sarbecoviruses Now Published: 10.1016/j.isci.2023.106540 |
bioRxiv | Nov. 11, 2022 |
SARS-CoV-2 mutational variants evade humoral immune responses elicited by vaccines and current monoclonal antibody (mAb) therapies. Novel antibody-based treatments will thus need to exhibit broad neutralization against different variants. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies into one antibody taking advantage of the avidity, synergy and cooperativity provided by targeting two different epitopes. Here we used controlled Fab-arm exchange (cFAE), a versatile and straightforward method, to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader but less potent antibodies that also neutralize SARS-CoV. We demonstrate that the parental IgG’s rely on avidity for their neutralizing activity by comparing their potency to bsAbs containing one irrelevant “dead” Fab arm. We used single particle mass photometry to measure formation of antibody:spike complexes, and determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike (S), observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent or multivalent agents to provide a robust activity against circulating variants, as well as future SARS-like coronaviruses. |
||
Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody to antigenically distinct omicron SARS-CoV-2 subvariants Now Published: 10.1172/JCI166844 |
bioRxiv | Oct. 31, 2022 |
The rapid evolution of SARS-CoV-2 Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identify S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) and derived from an individual previously infected with SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrates broad cross-neutralization of all dominant variants including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1). Furthermore, it protected hamsters against in vivo challenges with wildtype, Delta, and BA.1 viruses. Structural analysis reveals that this antibody targets a class 1 epitope via multiple hydrophobic and polar interactions with its CDR-H3, in addition to common class 1 motifs in CDR-H1/CDR-H2. Importantly, this epitope is more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared to diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential, and may inform target-driven vaccine design against future SARS-CoV-2 variants. |
||
Broad SARS-CoV-2 Neutralization by Monoclonal and Bispecific Antibodies Derived from a Gamma-infected Individual Now Published: 10.1016/j.isci.2023.108009 |
bioRxiv | Oct. 14, 2022 |
ABSTRACT The worldwide pandemic caused by SARS-CoV-2 has remained a human medical threat due to the continued evolution of multiple variants that acquire resistance to vaccines and prior infection. Therefore, it is imperative to discover monoclonal antibodies (mAbs) that neutralize a broad range of SARS-CoV-2 variants for therapeutic and prophylactic use. A stabilized autologous SARS-CoV-2 spike glycoprotein was used to enrich antigen-specific B cells from an individual with a primary Gamma variant infection. Five mAbs selected from those B cells showed considerable neutralizing potency against multiple variants of concern, with COVA309-35 being the most potent against the autologous virus, as well as against Omicron BA.1 and BA.2. When combining the COVA309 mAbs as cocktails or bispecific antibody formats, the breadth and potency was significantly improved against all tested variants. In addition, the mechanism of cross-neutralization of the COVA309 mAbs was elucidated by structural analysis. Altogether these data indicate that a Gamma-infected individual can develop broadly neutralizing antibodies. |
||
Structural basis of epitope selectivity and potent protection from malaria by PfCSP antibody L9 Now Published: 10.1038/s41467-023-38509-2 |
bioRxiv | Oct. 7, 2022 |
A primary objective in malaria vaccine design is the generation of high-quality antibody responses against the circumsporozoite protein of the malaria parasite, Plasmodium falciparum (PfCSP). To enable rational antigen design, we solved a cryo-EM structure of the highly potent anti-PfCSP antibody L9 in complex with recombinant PfCSP. We found that L9 Fab binds multivalently to the CSP minor (NPNV) repeats, which is stabilized by a novel set of affinity-matured homotypic, antibody-antibody contacts. Molecular dynamics simulations revealed a critical role of the L9 light chain in integrity of the homotypic interface, which likely impacts CSP affinity and protective efficacy. These findings reveal the molecular mechanism of the unique NPNV selectivity of L9 and emphasize the importance of anti-homotypic affinity maturation in protective immunity against P. falciparum. The L9 light chain is crucial for potency by conferring multivalent, high affinity binding to the NPNV minor repeats of PfCSP. |
||
Structural conservation of Lassa virus glycoproteins and recognition by neutralizing antibodies Now Published: 10.1016/j.celrep.2023.112524 |
bioRxiv | Sept. 26, 2022 |
Lassa fever is an acute hemorrhagic fever caused by the zoonotic Lassa virus (LASV). The LASV glycoprotein complex (GPC) mediates viral entry and is the sole target for neutralizing antibodies. Immunogen design is complicated by the metastable nature of recombinant GPCs and the antigenic differences amongst LASV lineages. Despite the sequence diversity of GPC, structures of most lineages are lacking. We present the development and characterization of prefusion-stabilized, trimeric GPCs of LASV lineages II, V, and VI, revealing structural conservation despite sequence diversity. High-resolution structures and biophysical characterization of GPC in complex with GP1-A antibodies reveal their neutralization mechanisms. Finally, we present the isolation and characterization of a novel trimer-preferring neutralizing antibody belonging to the GPC-B competition group with an epitope that spans adjacent protomers and includes the fusion peptide. Our work provides molecular detail information on LASV antigenic diversity and will guide efforts to design pan-LASV vaccines. Structural characterization of soluble glycoproteins from four Lassa virus lineages. MAb 12.1F, belonging to the GP1-A cluster, inhibits matriglycan and LAMP-1 binding. GP1-A mAbs show glycan-dependence with 19.7E demonstrating lineage-dependent binding. A novel trimer-preferring NAb S370.7 targets the GPC-B epitope. |